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1. INTRODUCTION

The character of natural buoyant convection in rigidly contained inhomogeneous fluids can be
drastically altered by vibrating the container. Vibrations are expected to play a crucial influence
on heat and mass transfer onboard the ISS. It is becoming evident (especially as demonstrated
during the workshop held in ESTEC, September 98 [1]) that substantial vibrations will exist on
the ISS in the wide frequency spectrum.

In general, vibrational flows are very complex and governed by many parameters. It is
almost impossible to correctly predict vibrational effects empirically; a sophisticated theoretical
approach and numerical modeling are therefore essential. Available flight experiment data clearly
show that, once initiated by “g-jitter”, convective flows can exist for a long period of time in a
follow-up period of low gravity environment [2-7].

In many terrestrial crystal growth situations, convective transport of heat and constituent
components is dominated by buoyancy driven convection arising from compositional and thermal
gradients. Thus, it may be concluded that vibro-convective flow can potentially be used to
influence and even control transport in some crystal growth situations.

Control of convective transport continues to be an important aspect of crystal growth
research. A control of convection through static and rotating magnetic fields has been used by
several groups. In some cases, experimenters seeking to avoid buoyancy effects through use of
microgravity environments have expressed interest in the use of magnetic fields even under low
gravity conditions. However, there are many instances, whether due to materials properties or
other practical considerations, where the use of magnetic fields to induce stirring or suppress
flow may not be an option. In such cases, vibrational control becomes an attractive alternative. .

Experimental results clearly show that vibrational convection can provide enhanced
nutrient fluxes[8-14]. Numerical modeling work at the Institute de Mécaniques des Fluides de
Marseille has confirmed that vibration can also be used to suppress buoyancy-driven flows.
Furthermore, it was shown that such suppression would be very effective at reduced gravity

levels of 10-4 g or less. This raises the exciting possibility that, under microgravity conditions,
specific controlled vibration can be used to mask undesirable “g-jitter” induced convective
effects. Such g-jitter convection can be caused by quasi-steady residual acceleration [15,16] (due
to gravity gradient and atmospheric drag effects [7]), as well as transient and oscillatory '
acceleration disturbances [18,19]. It is understood that high-quality low gravity environments can
only be provided for specific limited time intervals. For a space station, interruptions and
disturbances are inevitable consequences of docking, pointing maneuvers, astronaut activity, etc.,
and will limit the maximum attainable duration of high quality microgravity periods. While
active vibration isolation can be a partial solution, it will not solve the problems that might arise
due to the quasi-steady and very low-frequency acceleration components related to the gravity
gradient and other orbital factors. Alternatively, rather than using vibration to suppress low-
gravity flows, one might envisage using vibration to provide flow regimes tailored to particular
crystal growth experiments. These flows would not be accessible under terrestrial conditions due
to strong natural convection effects.

Bouyancy driven vibro-convective motion occurs when oscillatory displacement of a
container wall induces the acceleration relative to the inner fluid. The vibration may be viewed as
a time-dependent modulation of steady gravity in some cases.



In a closed container filled with a homogeneous fluid, the fluid moves as a rigid body
with a container. If, however, the fluid density is nonuniform, fluid motion may ensue. Of course,
the magnitude of this motion, depends on the orientation of the vibrational direction with respect
to the local density gradients. Note that similar to Rayleigh-Bernard configurations there may be
a “critical” threshold for the coupled vibrational frequency and amplitude, to cause convection.
Interestingly, in the case of a constant density fluid, the fluid motion may also take place at
angular vibration, axial rotational vibration or ACRT flows (caused by accelerated - decelerated
rotation of a crucible) due to inertia forces. For density gradients caused by temperature, such
motion is called thermo-vibrational.

It has been recognized for some time that oscillatory or pulsatile flow can significantly
alter the transfer of mass, heat and momentum in fluid systems [2,8-14,20-33]. For example,
analyses of heat transfer in laminar oscillating flows have shown that at high frequencies the
effective diffusivity, kegr, behaves like kegr ~ Arz((x)v)”zlL and, at low frequencies, kg ~
A 0?v!?/L, where v is the kinematic viscosity, Ax is the cross stream average of a fluid
element over half the period of the oscillation and L is a characteristic gecometric distance (e.g.,
between the plates). It was also shown that heat transfer was most enhanced when the
characteristic heat transfer time was equal to half the oscillation period [24].

A great deal of work related to the theory of thermo-vibrational convection has been
carried out by Russian research groups. The main focus has been on thermo-vibrational
convection starting with the work of Zenkovskaya and Simonenko [34], who first obtained the
equations of thermo-vibrational convection in a high frequency limit. Since then, there have
been many theoretical [2,35-42] and some experimental (e.g., [12,13,43]) studies of the stability
of thermo-vibrational flows. One of the main conclusions that can be drawn from these works is
that for vibrations with specially chosen axes, the natural buoyancy driven convection which
would prevail in the absence of vibration can be suppressed at certain frequencies and amplitudes -
[39]. This has recently been analyzed in more detail [44] using the full equations of motion and
Gershuni’s time-averaged equations. The possibility of using vibration as a means of controlling
and suppressing convection was confirmed. A comprehensive introduction to vibrational
convection and other time-dependent modulation can be found in reference [45].

The problem of vibrational convection arising due to other buoyancy sources, such as
compositional density gradients, has also been approached. The onset of purely solutal and
thermosolutal convection has been examined for horizontally stratified layers subject to vertical
vibration [46,47].

There are several examples of experimental work concerning the influence of vibration
on crystal growth from melts and solutions [28-37]. These works involved a wide range of
intensities and frequencies (including ultrasound). Experimental attempts to understand how
low frequency vibrational stirring might be used to effect rapid mixing in melts and solutions
have been made by Liu et al. [54]. The influence of low frequency vibration on interface location
and shape during Bridgman growth of cadmium telluride was examined by Lu et al. [55]. Other
effects of low frequency vibrational convection on crystal growth include the increase in local
perfection of binary compound semiconductors [57], changes in interface shape [30], and the
facetting of germanium crystals [58]. The elimination of striations in indium antimonide may
also be due to the formation of a stationary melt flow due the torsional vibration [59].

Experimental results also clearly show that in certain cases vibrational convection can
provide enhanced nutrient fluxes during the solution growth of Rochelle salt and potassium
dihydrogen phosphate (KDP) [60,61]. Zharikov [62, 14] identified a characteristic low



frequency (< 100 Hz) vibrational flow regime in the liquid near a growing crystal. The form,
dimensionality and intensity of the flow were studied and the effects of vibration on heat and
mass transfer were analyzed for the case of Czochralski and Bridgman growth of sodium nitrate
(NaNO3). He showed that the vibration could drastically alter the character of flow and

concluded that vibration could exert a strong influence on transport and impurity incorporation
and locally influence growth kinetics.

Uspenskii and Favier [63] considered the interaction between high frequency and natural
convection in Bridgman-type crystal growth. They used the average thermo-vibrational flow
equations to theoretically examined the problem of suppressing natural convection using high

frequency (~ 104 Hz) low amplitude vibration and compared the efficiency of vibrational
damping to that of magnetic field damping. Using the physical properties representative of
GaSb, GaAS, etc., they found that under terrestrial conditions, (for high electroconductivities) the
magnetic field is more effective than vibration in damping flow in the horizontal Bridgman
configuration. In contrast, for vertical Bridgman, lateral vibration was most effective. The
horizontal velocity decreased by a factor of 10 and the vertical velocity by about 20. In
comparison a 1 Tessla vertical magnetic field only resulted in a factor of 6 decrease in maximum
velocity. They speculated that it might be possible to combine magnetic fields with vibration to
reach optimal damping conditions.

Vibrational flows are very complex and governed by many parameters. Here is an
incomplete list: Pr, Ra, Ra,, Ra, a,. o, L/R (Prandl, Rayleigh, vibrational Rayleigh,

compositional Rayleigh numbers, «, = Ra./ Ra,. . and aspect ratio), ¢, « (angles between

gravity vector, vibrational direction and the axis (temperature gradient)), E, Ro/L (Ekman
number, relative distance to the center of rotation for angular, rotational vibrations, a type of
vibrational action) and others. The range of parameter values is very wide: Pr is of the order of
0.01 for semiconductors, and of the order of 10 for oxide melts; gravity variation result in Ra
values of 10° to 10'° on a ground to 1- 10* in space, and similar for Ra, ; the frequency range is
from 0.01Hz to 100Hz and higher, etc. (see Table 1).

Farooq and Homsy [41] examined in depth the 2D case of a rectangular cavity, but an
understanding of 3D thermo-vibrational flows has not yet developed. Therefore, a sophisticated
theoretical approach and numerical modeling together with experimental research are essential
for the investigation of vibrational control of convective flows.



Table 1. Typical material properties for semiconductor and oxides melts, and
nondimensional problem parameters for numerical experiments

Dynamic parameters

Frequency 0.001 ... 1 ... 100 Hz

Angular amplitude e=0..15..45°

Geometry

Height L=2to 10cm

Diameter D=1to2cm =>L/D=10to 5

Material properties

Pr 0.01 (Ge, Si) ... to 15 (oxides)
Viscosity v=13e?cm?/s

Diffusivity D =1.3¢* em?/s

Thermal diffusivity k=13¢" cm2/s

Thermal expansion coeff. B=25e" K1

Body forces and related parameters

Gravity g=1..001..103 .1006g,
Temperature gradient G =25to0 100 K/cm
Magnetic field Ha=0...2,000 ... 20,000

Nondimensional parameters

2.4 Z
Y, AT oL.? AT Q4L v
Pr:_,Ra :_B_—g_’ Rag =B 0 ’E= 2’
K KV KV " QoL
Ra,, L/D, h/R,  Ha, Sc=v/D, Rac*, o= 8d/L%

Vibration types:

translational, circular polarized, angular, g-jitter



2. MODEL OVERVIEW

2.1 Heat and Mass Transport in Bridgman melt configurations

The research involved a numerical and experimental investigation of vibro-convective
transport regimes applied to the control of convection and transport during crystal growth by the
Bridgman technique. A typical Bridgman crystal growth configuration is shown in Fig. 1. This
work was motivated by recent developments in the understanding of low frequency thermo-
vibrational convection, results from recent Space Flight experiments on “g-jitter” induced flows,
and by current and planned experimental work at Stanford University and the General Physics
Institute, Russian Academy of Sciences in Moscow [1-5,40,64,65]. Although in principle, the
theoretical research described below can be carried out independently of a particular
experimental program, close collaboration with experimental groups created a firm practical
foundation.

We investigated five types of vibro-convective flows caused by translational, angular,
rotational vibrations (these results may be extended also for ACRT flows [92,94], due to
accelerated-decelerated rotation of a crucible-tank), and flows due to “g-jitter”. The flow regimes
were investigated by applying each type of vibrations to different materials to find regimes
beneficial to control or suppress of convection.

In section 2.2, the physical model and basic equations are described. The equations for
translational, polarized vibrations and “g-jitter” are given in section 2.2.2. Section 2.2.3 describes
the equations for angular, rotational and ACRT type vibrations. Solution methods are discussed
in section 2.3.

The basic problem analyzed was the suppression or control of buoyancy-driven
convection in melts during plane-front directional solidification. The work involved the analysis
of vibrational interaction with natural convection and its effects on the temporal evolution of
melt temperature and composition during growth (section 3). The philosophy behind our
approach is to use numerical modeling in two ways: Synergistically, with experimental
developments, and as a predictive tool. The synergism with experiment allows careful
interpretation of both experimental and modeling results for what can be a highly non-linear
physical situation. To explore regimes and system propertics currently inaccessible to the
experiment, the model was also used as a predictive tool. Initially guided by previous results
[34-67,70,73-76], the work involved an extensive investigation of vibrational flow regimes with
and without the presence of natural buoyancy-driven convection. As we progressed toward our
goal of defining the applicability of vibrational control of convection, we compared the ability of
vibration to suppress flow with that of a magnetic field.



2.2.  Theory and numerical modeling
2.2.1 The physical model

The plane-front directional solidification of a binary solid from a melt of initial composition ¢

in a cylindrical ampoule of radius R was considered. Fig.1. shows a physical model.
Calculations were made for two basic physical set-ups.

The first involves purely 3D thermo-vibrational convection in a differentially cylindrical
cavity with no consideration of solidification. These calculations were performed in conjunction
with the flow visualization experiments, ongoing experiments conducted by R.S. Feigelson at
Stanford University.

The second setup is closer to a practical solidification situation and involves explicit
consideration of plane-front solidification in a long cylindrical ampoule. Solidification takes
place as the ampoule is translated along a temperature gradient. For this model system,
translation of the ampoule is simulated by supplying a doped melt of bulk composition c., at a
constant velocity V,, at the top of the computational space (inlet), and withdrawing a solid of
composition ¢ = cg(x,t) from the bottom. The crystal-melt interface is located at a distance L
from the inlet; the radius of the ampoule is R. The temperature at the interface is taken to be Ty,

the melting temperature of the crystal, while the upper boundary is held at a higher temperature
T}, (Fig. 2). On the ampoule walls the heat transfer between the furnace and the ampoule will be
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modeled using a suitable heat transfer condition. The heating profile includes a long isothermal
hot zone. In this case, thermo-vibrational convection in the upper portion of the melt will be
weak or nonexistent. Thus, the effect of our implicit neglect of the no-slip condition at the top of
a real ampoule will be negligible.

Both thermal, solutal and thermo-solutal convection were considered. For thermo-
vibrational convection we considered two types of vibration, translational and angular. The frame
of reference for the calculations is an experimental frame attached to the walls of the ampoule.
Thus, depending on the type of displacement induced by the vibrating walls, the equations
governing momentum mass and heat transport will take on a different form. In section 2.2.2 we
consider translational and polarized vibrations, followed by angular and rotational vibration in
section 2.2.3.

2.2.2. Translational, polarized vibration and “g-jitter”

Translational vibration corresponds to a linear displacement such as, for example, u =
dcosax, where d ] is a real vector corresponding to the displacement amplitude. Thus, a point is
displaced back and forth upon the same line. Polarized vibrations are characterized by a
displacement u = Re{de""”} where d =dJ - i d2 (see Fig. 3). Here the instantaneous vibration
direction rotates in the polarization plane defined by the real vectors djand d2. A case of
orthogonal equal length vectors djand d2 , the circular polarized vibration, is called a CVS
method [32]

d=dy-idsp

|
i
1
Plane of polarization ‘
|

x \—>
X
u=Re{de ™} |

y d b

Figure 3: Translational vibration (a),dj ord = 0, and polarized vibration (b),dj.d2 # 0; ¢ is the angle

between gravity vector and axis of ampoule, ¢! is the angle between direction of vibrations and axis of ampoule

For a reference frame fixed to the vibrating ampoule both these types of vibrations result
in equations of the following form [17,46,47]. The momentum and continuity equations are

% +(V-V)V+Vp-PrV’V = RaPr(®@+ a,c)k + Ra, Pr(®+a cf(x,w,r) (1)

V-V=0 (2)

while the continuity and heat - mass transport equations are:



78,

Z4+V.ve=V’0

E (3)
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where length, time and velocity have been scaled by Ry, Ri?/k and &/Ry, where Ry is the radius
of the ampoule and K is the thermal diffusivity, k is a unit vector in the direction of gravity.

The Prandtl, Schmidt, Rayleigh and solutal -thermal buoyancy ratio are given by

3
Ra - PATIR O(C_ﬁccw

v
Pr = SC__D_’ vk YT BAT

v
K )
where B and P are the thermal and solutal expansion coefficients and AT, g, v and D are the
characteristic longitudinal temperature difference in the melt, gravitational acceleration,

kinematic viscosity and solute diffusivity, respectively. The dimensionless number Ra, and Ra,,
are vibrational Rayleigh numbers defined as

_d w?B AcR®

_d w?PATR
B ’ VK

VK

For the solidification calculations, the following boundary conditions apply at the crystal-melt
interface.

Ra, Ra

6=0,V-N=Pe,VxN=0 (5)
9€ _ pescPr-'(l- k)e
n

where:Pe = V,,R/k is the Peclet number, & is the distribution coefficient and N is the unit vector
normal to the planar crystal melt interface. At the top of the ampoule,

O=1LV-N=Pe,VxN=0 (6)

&_cz PeSc Pr“](c -1
n

where, due to the fact that we consider the top of the computational space as an inlet, the
last condition represents conservation of mass. Finally, on the ampoule walls we have

VN =Pe,ScPr!, Vey,=0, We, =h(0-0y(2)), VCey= 0, (7)

where © 4(z) is the heating profile, 4 is a dimensionless heat transfer coefficient and ey 1S
normal to the walls.

L1



The body force f(x,t) = nsin(Q¢) for translational vibration, where n is direction of
vibration (Fig. 3b); f(x,t) = [cos(Q 1), sin( 1), O]T for polarized vibrations and f(x,t) = J,(t), the
3D vector of “g-jitter” microaccelerations (e.g. measured SAMS microacceleration data or the
numerical “g-jitter” model).

Vibrating immersed body. The application of vibration through placement of vibrating
bodies at specific locations in the melt can also be modeled as a variant of the translational and
polarized vibration problems.

Average equations for small amplitude vibrational displacements

The dimensionless groups Ra, and Ra.. in equation (1) should not be confused with the
vibrational Rayleigh number Rag of Gershuni [34-39,45-76], which arises for monochromatic
vibration as follows. If the amplitude |d| of a sinusoidal vibration is sufficiently small, i.e., |d| <<
min( R/BAT, R/Bcso), the velocity, temperature and concentration fields may be represented as
the superposition of mean (averaged) fields and small oscillating components [34,74]. In this
case, application of the averaging method [45] yields

o

pr (f»V) p=-Vp+Pr V% + PrRa( ©+ o, C) k +PrRu g (w-V)[(@+ o, O)n-wl, (8)

V.-v=0, 9)

where Rag = Bod RAT)2/kv is Gershuni’s thermo-vibrational Rayleigh number and o =
Bccoo/BAT is the ratio of the solutal and thermal buoyancy. The vector w is the slowly time-
varying part (may be stationary) of the oscillating part of the velocity field and satisfies

- V.w=0,Vaw=V[(0+a,)rn, (10)

and is the solenoidal part of the vector field (B+ o,z CO)n =w + V@ . The average temperature
and solute fields satisfy

%Gt);+ (vv)e =v'e , (11 )
and . :

9C VYo Prpis

Tt—+(vV)C_SCVC. (12 )

The boundary conditions for the averaged equations are of the same form as (4)- (8)
and the component of w normal to the boundaries must be equal to 0 on the ampoule walls and
equal to Pe at the top of the ampoule and at the melt-crystal interface. For thermally buoyant
natural and vibrational convection we simply set o = 0 and for no solidification, Pe = 0.

For the problems under consideration, the averaged equations result in the steady-state
equations. Our recently developed novel methods of numerical bifurcation theory [69] are
suitable for the analysis of stability and onset of vibrational flow regimes.

12
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Figure 4: Diagram of the system for angular vibration to be modeled (a), x* and x are the two coordinate systems
related by (10). The container is rotated at an angle T(t) = & sin (£, 1} about a center of rotation at x* = ().

Axial vibrations and ACRT (b), are rotation about the axis z, the angle T{t) = £ sin {8, t) for vibrations or
T="T(t) (selected ACRT law).



2.2.3. Angular, rotational vibration and ACRT flows
The equations of motion for angular and rotational vibrations take on a more complicated form.

Angular vibration. Let x* = (x| *, x2*, x3*) be a fixed Cartesian coordinate system (see Fig. 4a). A
container of length L is subjected to an angular vibration q(t) in the x| *-x3* plane. The position

vector to the mass center of the cylinder is parallel to the side of the cylinder and is given by
q* = Ro[— sin i} + cos i3], (13)

where Ry is the distance from the origin 0% to the mass center of the cylinder and
0(t) =¢esin Qqt , (14)

where t is time.

Rotational vibration and ACRT (Fig. 4b). The container is rotated about the axis z, the angle T{1) = ¢
sin (9, t) for vibrations or T=T(r) (selected ACRT law, see [77]); ¢ is the angle between the gravity
vector and axis of ampoule. The ACRT type of vibration was not in the original research plan. We
just note here, that the software developed in the frame of current research is capable for the
investigation of ACRT flows without any modifications.

In the reference frame moving (rotating) with the ampoule the momentum equation has a form
N - 2
7+(V-V)V+p Vp-oViV =) Tg+(@wxq)xw+2V xw+qxdE (15)
4

where w=1[0, ¢ Q'O cos (Qyt), 0]T for angular vibration and w= [0, 0, ¢ QO cos (&, t)]T for rotational
vibration and @ = [0, 0, drt/dt |" for ACRT. The problem has the following nondimensional
determining parameters: Q = QoL2/k, the dimensionless frequency and © = R¢/L; the Prandtl, Pr,
Rayleigh, Ra, vibrational Rayleigh Ragq, and Ekman, E, numbers are

AT gL’ AT Q3L4 :
2=t Kng’RaQZB ’11;\&)20 E=—,
Qol”

where P, v, g and K are the coefficient of thermal expansion, kinematic viscosity, gravitational
acceleration and thermal diffusivity, respectively. Note that, the system of equations (15) differ from
the usual equations in the absence of rotation in that two additional terms are present in each
equation; the Coriolis term which is proportional to ePr/E, and the centrifugal term which is
proportional to £29RagPr at x = 0 and varies with position in the ampoule. The importance of the
latter term depends on the dimensions of the amplitude of the angular vibration, €, and the ratio .
Note that the centrifugal terms give rise to periodic forcing that fluctuates about a mean value at twice
the period of the angular vibration.

Since the above system of equations has not been well studied, we used a conservative
approach for the study of angular vibrations and confineed our investigation to a parametric study of
flow regimes and transitions for thermo-vibrational situations only, without solidification.

14



2.3.  Solution method and software

The equations are solved in primitive variable form (velocity-pressure, temperature, etc.) using a
Finite Element Method package developed by the Principle Investigator [65-67,71-73]. The package,
FEMINA/3D, is designed to solve 2D and 3D problems and includes four basic groups of modules
each distinguished by its function: automatic 2D/3D mesh generation, optimal renumbering or
matrix-bandwidth/front optimization, a computational part including efficient algebraic solvers and
visualization/graphics software. The novel methods developed and implemented allow a use of
efficient, same order finite element approximation for velocity and pressure, and robust iterative

solution techniques of a high accuracy (up to 10° )

The FEMINA/3D code has overcome most of the disadvantages associated with the memory
requirements of FEM methods by using an efficient combination of solution methods. These include
the iterative solution of large non-symmetric algebraic systems using iterative IDR-CGS type
techniques [72,82-84,91] with preconditioning by incomplete decomposition of high order in a
compact matrix storage scheme. That reduced the computation time by one to two orders of
magnitude and memory requirements by an order for 3D flows over currently available commercial
codes (e.g. CFD2000). Typical solution time for a transient 3D problem with a 200,000 unknowns is
a couple of hours on a SGI O2 workstation (much faster on CRAY-C90); solution time for a 3D
steady convective flow problem is a couple of minutes.

FEMINA/3D simultaneously considers the continuity equation directly with the momentum
equations at each solution step. This eliminates many problems related to boundary conditions and
places only slight limitations on the time step size for transient problems (these limitations are related
to the physical nature of the problem rather than the numerical method itself).

The package has been carefully verified by comparison of numerical and analytical solutions
as well as comparison with results obtained by other methods and experimental data for 2D and 3D
viscous flows and thermal convection problems [65,67,73,86,91]. -

A wide range of problems has been investigated using this package, including time-dependent
fluid flow (64, see also [72] and references therein) and mass and heat transfer in complex geometries
[64,78,79]. Other practical applications include thermal convection and transport during crystal
growth processes [33,40,79,80,81] and other engineering problems.

15



3. INVESTIGATION OF VIBRATIONAL CONTROL OF CONVECTIVE FLOWS IN
BRIDGMAN MELT CONFIGURATIONS

Results of the investigation of vibrational control of the Bridgman crystal growth technique have been
published in journal papers, conference proceedings and presented at conferences, workshops and
colloquia, listed in Section 6.

A summary of results from our publications [33,40,64-70,86-92,99] is presented below.

(i) An efficient numerical code, a main research tool, for the modeling of three-dimensional
thermal-vibrational convection for several types of vibrations has been developed by the PI based on
the finite element code FEMINA/3D created by the PI [71,72]. The code was carefully tested on
experimental benchmarks, and published numerical data for a variety of 2D and 3D viscous flows and
thermal convection problems [65,67,73]. The novel methods developed and implemented allow a use
of efficient, same order finite element approximation, for velocity and pressure, and robust iterative

solution techniques of a high accuracy (up to 107%). This reduced the computation time by one to two
order of magnitude and memory (by 8 times less) for 3D flows over currently available commercial
codes (e.g. CFD2000). Typical solution time for a transient 3D problem with 200,000 unknowns is a
couple of hours on a SGI O2 workstation; solution time for a 3D steady convective flow problem is a
couple of minutes [86,90.91]. A new efficient numerical continuation approach, based on the
multiquadric method, for the stability and bifurcation analysis was developed [69, 89].

(ii) A parametric study of the general 3D buoyant-vibrational flow in a Bridgman growth
system has been performed. This includes the characterization of flows induced by translational,
rotational and circular polarized (also known as CVS, after R. Feigelson [32]) vibrations under
selected microgravity and Earth conditions for typical semiconductor and oxide melts [33,40]. A
typical flow pattern for translational vibration is presented in Fig. 5. Even in 0g we have found flows,
i.e. characterized by a fluid flowing up one side and down the other (relative; to the Figure). The
temperature distribution remain almost unperturbed for semiconductor melts (due to the low Pr
number), therefore a separate plot for AT is provided.

T

AT vl

Vy

Figure 5. Typical instantaneous 3D melt flow patterns for translational vibration at Og, Ra=0, Ra,=7.25-10", w = 100Hz.
lateral vibration: velocity components V,,V,.V,, pressure P, temperature T, temperature disturbance AT, and velocity
module |V]. Black color designate the minimal value plotted, white one - the maximal value

The angular orientation between the direction of vibration and ampoule axis (with imposed T-

gradient) has been studied for translational vibrations. When that angle is zero, there is no influence
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of the vibration on a flow even if vibrational Raleigh number is very high. The maximum observed
effect corresponds to an angle of 90 degrees.

The flow patterns for rotational vibrations flow regimes are presented in Fig. 6. Maximal
values of flow velocity are observed at the end of the ampoule which is more far from the rotation
origin.

L

Vx
Figure 6. Typical instantaneous 3D tlow patterns for angular vibration at 0g, Ra=0, Ra,=4.6- 10°, @ = 100Hz, lateral

vibration: velocity components V,,V,,V,, temperature T, temperature disturbance AT, and velocity module |V|.
We found that both translational and angular vibration can cause average melt flow for a range of
parameters typical of practical semiconductor and oxide growth. For a given vibration amplitude and
frequency, angular and circular polarized vibrations result in more intensive melt flow than
translational ones.

(ii1) The influence of vibrations on the heat - mass transfer becomes much more significant for
oxide melts due to their low thermodiffusivity (Prandtl number ~ 10, that is four orders higher than
for semiconductors). These flow patterns are shown in Fig. 7 for the case of circular polarized
vibration.

T ar vy

Vz T C V| AT

Figure 7. Instantaneous 3D flow patterns for circular polarized vibration, Ra = 7.25 - 10', Ra,=7.4-10°, w = 10Hz:
velocity components V, , V, , temperature T, concentration C, velocity module [V|, and temperature disturbance AT.
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Initially (at the time = 0) the species concentration was c¢=1 at the lower quarter of the cylinder and ¢
= 0 elsewhere. The evolution of the species concentration (process of mixing) is shown in Fig.8
together with minimum and maximum values of velocity components. Complete mixing

TNTRAT SAVA VAT,

kX
e 7

Figure 8. Temporal evolution of concentration C (left, min. and max. of C) and velocity extremums (V,, center, and V,
right) for circular polarized vibration, Ra=7.25- 10°, Ra,=7.4- 10°, w = 10Hz.

occurs in about ten seconds. The heat transfer (local Nusselt number at the top and the bottom) is also
enhanced by about an order of magnitude. If the frequency of vibration is higher, of the order of
LOOHz (for fixed Ra,), then the change of heat and mass transfer due to vibrations becomes less
significant. That corresponds to the experimental observations by R.Feigelson [32,74]. The
visualization of results of numerical modeling, the 3D movies of vibrational flows, heat and mass
transfer are available on the Web, http://uahtitan.uah.edu/alex/cvs_numeric.html for some cases.

(iv) The oscillation of flow values, in addition to a drive frequency, shows /2 subharmonic
in the pressure field. Similar experimental spectra was observed by M.Schatz [75]. With the
increasing of vibration intensity, additional oscillating flow frequencies (superharmonics) appear.

(v) The results on the influence of forced vibration on g-jitter induced flows are available
[64]. G-jitter was implemented using SAMS microacceleration data from the USML-2 (Fig. 9).
Initially the translational vibration were applied in the direction parallel to the ampoule axis (T-
gradient), trying to damp flow variation with time caused by g-jitter (predicted by the averaged
equation theory [45]).

USML-2 DAY 1 HEAD A SAMS DATA
0.0001 T T T T T T

"axm00101.112” ——
z "aym00101.11R" ------
T - "aZmOO‘IOLHR" _____ -

6e-05 |

S en
Slipdeteraen
A3 Lanse

4e-05

2e-05

1]

-2e-05 h:

MICROACCELERATION

-4e-05

-6e-05 H

-8e-05 ¥

-0.0001 ¢
[s]

Figure 8: G-jitter microacceleration SAMS data from USML-2 mission, used in numerical simulations.
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While the flow variation with time becomes more regular, a suppressing temporal variation of the
melt velocity due the g-jitter was not succeeded. Alternatively, the use of the same amplitude
vibration in the direction orthogonal to the ampoule axis induces intensive thermal vibration flows
and flow disturbances due to g-jitter become practically not visible. Nevertheless recent results show
that axial translational vibrations have a tendency to prevent the development of a strong stationary
vortex cell, that otherwise may occur.

(v) Convective flows in a semiconductor melt with strong static axial magnetic field applied
were investigated, and we compared three different numerical methods for the solution of thermal
convection [87]. Although the generated flows are extremely low, the computational task is very
complicated because of the thin boundary layer at high Hartmann numbers, Ha >> 1. We considered
melt region geometry with different aspect ratios, and gravity direction aligned and misaligned with
the magnetic field vector. The comparison shows that the finite element approach with regularization
can obtain stable and reliable solutions in a wide range of Ha number, up to 10*. These results
compare favorably with asymptotic solutions [99,100]. Numerical solution of these problems by
available commercial CFD codes may be not efficient or not possible at all.
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Figure 9:Stream function for aligned (a) and (b) misaligned by 0.5 degree gravity and magnetic field directions, Ha=2170
(B = 5T1) (c) Vertical velocity profile Vy(x) at y=0.25H, x in [-1,1], (note boundary layer), Ha=2.2 10*, B = 50 T1 (d)
Detail of the velocity profile (c) in a boundary layer, x from -1 to -0.99. (¢) Summary of the magnetic field
suppression of melt flow: maximum value of horizontal velocity magnitude versus magnetic field B for aligned and
misaligned by 0.5 degreemagnetic field and gravity vectors. Predicted theoretical asymptotic dependence for the
velocity V,m,pHa'2 is observed from about B=0.5 T1. Results are obtained with our FEMINA/3D code for Ha number
up to Ha=2 10*; other tested in methods did not provide acceptable results or failed for Ha > 100
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The efficiency of the convective flow suppression by axial magnetic field at Ig is very sensitive
to misalignment of the gravity vector with ampoule axis direction. For example, in case of
misalignment by 0.5 deg., the axial temperature gradient (which was stabilizing) becomes a main
driving force for the thermal convection, resulting in the increase of convection velocity
magnitude by a factor of 3 to 10.

4. CONCLUSIONS

. We verified and confirmed the validity of the Boussinesq model for semiconductor and
oxide melts under microgravity conditions for all the flow regimes under consideration.

. Powerful tool, the 3D finite element code FEDIMA/3D has been developed. Efficient
numerical methods for 3D thermal vibrational convection are implemented; carefully tested;
good agreement with experimental data is obtained. This tool is capable for high accuracy
modeling of 3D thermo-vibrational convection,and flows under strong magnetic field in a wide
range of problem parameters.

. A parametric study of the gencral buoyant-vibrational flow in a Bridgman growth system
was performed for both semiconductor and oxide melts.

. The influence of angle between a direction of vibration and ampoule axis (temperature
gradient) has been studied for translational vibrations. Zero angle - no influence of the vibration
on a flow. The maximum effect corresponds to an angle of 90 degrees. Here transport is
significantly enhanced.

. Influence of g-jitter and forced vibrations has been analyzed.

. All kinds of vibration can cause average melt flow for a parameter range for practical
semiconductor/oxide growth. Rotational (angular) and polarized vibrations result in more
intensive melt flows than translational ones. Typical flow patterns for different flow regimes
have been identified.

. The vibrational influence is stronger for oxides than for semiconductors.
. The frequency range was identified where vibrational influence efficient. .
. Suppression of convective flows in a semiconductor melt with strong static axial’

magnetic field applied were investigated. High sensitivity of magnetic field direction and gravity
vector misalignment has been found and analyzed.
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Abstract

It is generally recognized that oscillatory. or pulsatile, flow significantly alters the transfer of mass. heat and
momentum :n fluid svstems. A numerical investigation of thermovibrational buoyancy-driven flow in differentially
heated cvlindrical containers is presented as part of a study of thermovibrational transport regimes in Bridgman-type
systems. The formulation of a physical and mathematical model for this problem is outlined and its application to the
study of investigation of thermal vibrational flows is discussed. Three types of vibration are considered: translational,
circularly poiarized and rotational. Tt is demonstrated that forced vibration can significantly affect flows that have been

induced by g-iitter and selected results for the cases of longitudinal and lateral vibrations are presented.
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1. Introduction

The character of natural buoyant convection in
rigidlv contained inhomogeneous fluids can be
drasticallv altered by vibration of the container.
For certain experiments and operating conditions,
vibrations are expected to have a significant influ-
ence on heat and mass transfer onboard the Inter-
national Space Station (ISS). Furthermore. it
appears that (see for example. the recent ESTEC

* Corresponding author. Tel: + 1-236-890-6889; fax: + 1-
236-390-69+=

Eomail  aidressess alex@@emmruahedu (AL Fedoseyev),
ida2u poowrzedu 1 LLD. Alexanden

Workshop proceedings [1]) g-jitter vibrations will
exist on ISS over a wide range of frequencies.

In general, vibrational flows are very complex
and are governed by many parameters. This com-
plexity makes it almost impossible to correctly pre-
dict vibrational effects empirically. Thus. a careful
theoretical approach combined with numerical
modeling is essential. Available flight experiment
data clearly show that, once initiated by “g-jitter”,
the effects of convective flows can persist for long
times even when the g-jitter disturbance (and con-
sequent flow) were short-lived [2-7].

In many terrestrial crystal growth situations
convective transport of heat and constituent com-
ponents is dominated by buovancy-driven convec
tion. Control of convective transport continues

Q022.02a% 0 Sosee front matter ¢ 2000 Elsevier Science B.V. All rights reserved.
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be an important aspect of crystal growth research.
Several groups are actively pursuing control of
convection using static and rotating magnetic
fields. In some cases. experimenters seeking to
avoid buovancy effects by conducting their experi-
ments in microgravity environments have ex-
pressed interest in the use of magnetic fields even
under low gravity conditions. However, there are
many instances. whether due to materials proper-
ties or other practical considerations. use of mag-
netic fields to induce stirring or to suppress
unwanted flows may not be an option. Magnetic
fields cannot be used for flow control in melts and
solutions that are poor conductors. Flow sup-
pression through vibration or vibro-convective
mixing may offer an attractive alternative in such
cases.

It is understood that high-quality low-gravity
environments can only be provided for specific lim-
ited time intervals. For space stations. interruptions
and disturbances are inevitable consequences of
docking. pointing maneuvers, astronaut activity,
etc.. and will limit the maximum attainable dura-
tion of high-quality microgravity periods. While
active vibration isolation can be a partial solution.
it will not solve the problems that might arise due
to the quasi-steady and very low-frequency acceler-
ation components related to the gravity gradient
and other orbital factors. Alternatively. rather than
using vibration to suppress low-gravity flows. one
might envisage using vibration to provide flow re-
gimes tailored to particular crystal growth experi-
ments.

Recent work has shown that the character of
natural buovant convection in nonuniformly
heated. rigidly contained inhomogeneous fluids can
be drastically altered by vibration of the container.
A review and relevant theoretical and experimental
research can be found in publications [1-13]. Thus.
vibrational. induced flow can potentially be used to
influence and even control transport in some crys-
tal growth situations. A practical quantitative un-
derstanding of vibrational convection as a control
parameter in crystal growth situations is currently
not available. The objective of the work is to assess
the feasibility of the use of vibration to suppress, or
control. convection in order to achieve transport
control during crystal growth.

(e
N

2. Theory and numerical modeling

Buoyancy driven vibro-convective motion oc-
curs when oscillatory displacement of a container
wall induces the acceleration of a container wall
relative to the inner fluid. The vibration may be
viewed as a time-dependent modulation of steady
gravity. In a closed container the fluid will move as

a.rigid body with a container. If, however, the fluid

density is nonuniform. fluid motion may ensue. The
magnitude of this motion, of course, depends on the
orientation of the vibrational direction with respect
to the local density gradients. Note that, similar to
Rayleigh-Benard configurations, there may be
a “critical” threshold for the coupled vibrational
frequency and amplitude, to cause convection.
Interestingly, it should be noted that in case of a
constant density fluid subjected to spatially non-
uniform vibration, fluid motion can also occur (for
example, angular vibration [11]).

To properly investigate influence of transla-
tional. circularly polarized and rotational (angular)
vibration necessitates the use of the full 3D equa-
tions governing the transport of heat. mass and
momentum. Selected examples of our ongoing
work on this topic are outlined below.

2.1. The physical model

We consider a purely thermo-vibrational con-
vection in a differentially heated cylindrical cavity
with no consideration of solidification. The fluid is
taken to be Newtonian. with a constant viscosity
and the Boussinesq approximation is assumed tc
hold. The validity of this approximation is dis-
cussed in Section 3. The calculations were per
formed for identification and characterization o
thermovibrational flow and are part of an ongoins
project involving flow visualization model experl
ments being conducted by Feigelson [10].

2.2 Mathematical model for translational vibratioi

Translational vibration corresponds to a linea
displacement such as. for example, u =dcos®
where d is a real vector giving the displacemer
magnitude and w is the frequency. In this case th
ampoule is displaced back and forth upon the sam
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Fig. 1. Translatonal vibration (a). d; ord; = 0. and polarized vibration (b). dy. d, # 0; ¢ is the angle between gravity vector and the
ampoule axis. x is the angle between the vibration direct:on and the ampoule axis.

line. Polarized vibrations are characterized by
a displacement # = Re{de™’} where d = d, —id>
(see Fig. 1). Here the instantaneous vibration direc-
tion rotates in the polarization plane defined by the
real vectors d, and d,. A sketch showing both
translational and circular polarized vibraticns is
presented in Fig. 1. In a reference frame fixad to
a vibrating ampoule. these types of vibrations result
in the following form of the momentum equation:

ov

= +{v- v =—Vp + Pr7r + RarPr(@ + zCk

+ RazFPr@ + zC) f(.1). {(H

where length. time and velocity are scaled by
Ro. R3/x and x,R,. Here Rg 1s the ampoule radius
and & is the thermal diffusivity. The nondimen-
sional concentration and temperature, are given by
©. and C. respectively. The function f(.1) 1s the
acceleration of the vibrating ampoule and
Q = wR} x is a dimensionless frequency. The con-
tinuity and heat-mass transfer equations complete
the problem formulation. The Prandtl. Schmidt.
thermal and solutal Rayleigh and vibrational

Ravleigh numbers and the buoyancy ratio are. re-
spectively, given by

' ' ATgR?
Pr = ‘—. Sc = ‘—. Ray = ﬁ———g——,
K D VK
. 2 3
1___/3#«3’ o ___d(u BATR ' )
BAT VK

Here § and f, are the thermal and solutal expan-
sion coefficients and AT, ¢4, ¢, d. w, k, v. D are the
characteristic longitudinal temperature difference.
reference concentration in the melt, gravitational
acceleration. vibrational displacement amplitude
and frequency, direction of gravity, kinematic vis-
cosity and solute diffusivity, respectively. The di
mensionless number Raf is the vibrationa
Rayleigh number and Ra§ = xzRaf. Eq. (2) 1s solvec
together with the equations governing heat anc
species transfer and the condition that the velocit:
is divergence free.

2.3. Rotational vibration

The equations of motion for angular vibration
take on a more complicated form (see Fig. 2
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Container cross section
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Fig. 2. Diagram of the rotational (angular) vibration. T2 con-
tainer is rotated at an angle 8(r) about a center of rotztion at
x* = 0. The vector g+ connects the center of rotation to 152 mass
center of the container.

A container of length L is subjected to an angular
displacement 6(t) in the x¥-x% plane. Here the coor-
dinates x* are referred to a fixed laboratory frame
of reference. The position vector to the mass center
of the cvlinder is parallel to the side of the cvlinder
and is given by g* = Ro[ —sin0if +cos 0i%]
where R, is the distance from the origin 0% to the
mass center of the cylinder and 6(r) = £sin Q,1. In
a frame of reference moving with the container. the
equations of motion have the form

Dv .
5 = div v — pk(sin 6i, + cos 8i3)

+ p[20r — Qx + Qx
+ e2Q% R, cos Qotiy]. (3)

where D, Dr denotes the material derivative. v 1s the
velocity of the fluid relative to the moving refarence
frame. p is the density of the fluid. @ is the rate of
rotation tensor for the moving frame with respect
to the fixed frame of reference. € is its time deriva-
tive and T is the Newtonian stress tensor for the
fluid. As in the previous example. the fluid is taken
to have a constant viscosity and the Boussinesq
approximation is assumed to hold. The dimension-
less equations governing the transport of mo-
mentum. mass and heat in the cylinder are obtained
after using L. L*/xk.x/L. and AT =Ty — Tc to
scale. respectively. length. time. velocity and tem-
perature. The governing dimensionless parameters

are the dimensionless frequency Q = € L*/x. the
dimensionless container radius, 3= Ro,/L. the
Prandtl, Pr. and the Rayleigh. Ra, vibrational
Rayleigh Ra,, and Ekman, E. numbers. The latter
are given by

' ATgL?
" Ra:ﬁ__g_’

K KV

R BATQRL* . _ v “
a = —— = 5
“ KV ' QyL" )

Pr =

where B, v, g and x are the coefficient of thermal
expansion, kinematic viscosity, gravitational accel-
eration and thermal diffusivity, respectively. This
system of equations differ from the usual equations
in the absence of rotation in which additional terms
are present; the Coriolis term which is proportional
to ¢Pr/E, and the centrifugal term which is propor-
tional to e29Ra,Pr and varies linearly with position
in the ampoule. The importance of the latter term
depends on the dimensions of the amplitude of the
angular vibration, ¢, and the ratio 9. The rocking
motion of the angular vibration under considera-
tion means that centrifugal terms give rise to a peri-
odic forcing that fluctuates about the mean value at
twice the period of the angular vibration.

Since the above system of equations has not been
well studied. a conservative approach was adopted
for the study of angular vibrations and we confine
our investigation to a parametric study of tflow
regimes and transitions for thermo-vibrational situ-
ations in the absence of solidification.

2.4. Solution method

The equations are solved in primitive variable
form (velocity-pressure, temperature. concentra-
tion. etc.) using a finite element method package
FEMINA/3D [14]. The continuity equation and
momentum equations are considered simulta-
neously at each time step. This eliminates many
problems related to boundary conditions and pla-
ces only slight limitations on the time step size-for
transient problems (due to the physical nature o
the problem). The regularization for the incompres:
sibility condition makes the solution procedure
more efficient. and allows the same order finits
element approximation for both the velocity an
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pressure [15]. This approach makes it possible to
solve large time-dependent problems (up to 300 000
unknowns) on a SGI O2 workstation with reason-
able computation times.

We implemented the above 3D models of
convective buovancy-driven melt flow in differen-
tially heated cylindrical containers using the
FEMINA/3D code. This code was carefully tested
on benchmarked experimental and numerical data
for a variety of 2D/3D viscous and thermo-convec-
tive flow problems [15.16].

For rotational vibrations the Ekman number
can be of the order 107 *-107" for frequencies on
the order of 1 Hz. This results in large coefficients.
Pr/E. for the Coriolis terms In the governing
equations and causes difficulties in the numerical
solution. To resolve this we implemented a high-
accuracy solution method using preconditioning
by high-order incomplete decomposition. This al-
lowed us to obtain high-precision solutions with
accuracy up to 10~ °. Preconditioning also reduced
the computation times by one to two orders of
magnitude and the memory size by a factor of 8 for
3D flows compared to currently available commer-
cial codes (e.g. CFD2000). A typical solution time

Vx Vy Vz

Fig. 3. Typical instantaneous D melt  flow

patterns

for a transient problem is about 2h on a SGI1 O2
workstation.

3. Results and discussion

We verified the validity of the Boussinesq model
for semiconductor and oxide melts under micro-
gravity conditions. This topic has been discussed

‘recently by Perera and Sekerka [17], Pukhnachev

[18] and Gershuni and Lyubimov [11]. If the non-
dimensional criteria, proposed by Pukhnachev.
Pu = gL*v~ 'k~ !is less than 1, then the Boussinesq
model for thermal convection may not be valid.
Our estimates show that the Boussinesq model 1s
quite adequate for the differentially heated closed
ampoule and the range of parameters and material
properties under investigation. The values of Pu are
of the order 10*-10° for semiconductor and oxide
melts for g/go = 107°-107%, clearly well above 1.

A parametric study of translational and rota-
tional vibrations under typical microgravity and
terrestrial conditions for typical semiconductor
melts was performed. A snapshot of a typical flow
pattern for translational vibration is presented in
Fig. 3. Even in the total absence of gravity the
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Ra = 0.Rap = 7.25x 10*, Pr =001, w = 100 Hz. The velocity components are V., V,, V., P is the pressure. T is the temperature. A
is the instantaneous temperature disturbance and |V is the velocity magnitude. The grayscale range corresponds to maximum value
(white) of the velocity. temperature and pressure variables 1o their minimum values (black). Vibrations are applied along the horizont:
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vibrations have resulted in detectable flows. For the
cases examined. the temperature distribution re-
mains almost unperturbed (due to the low Pr and
weak tlow strength).

The angle between the direction of vibration and
the ampoule has been studied for translational vi-
brations in the presence of an axial temperature
gradient. At high frequencies and when the angle is
zero. no influence of the vibration on the flow was
observed. even when vibrational the Rayleigh num-
ber is very high. The maximum observed effect
corresponds to an angle of 90°. Here transport is
significantly enhanced.

Typical flow patterns for rotational vibrations
flow regimes are presented in Fig. 4. Maximal
values of flow velocity are observed at the end of
the ampoule that is farthest from the rotation ori-
gin.

The influence of vibrations on heat and mass
transfer becomes significant for oxide melts due to
their low thermal diffusivity (Pr ~ 10). These flow
patterns are shown in Fig. 5 for the case of circular
polarized vibration. Initially (at time t = 0). the
species concentration was ¢ = 1 at the lower quar-
ter of the cvlinder and ¢ = O elsewhere. The evolu-
tion of the species concentration (process of mixing)
is shown in Fig. 6 together with minimum and
maximum values of velocity (for the whole domain)
components. Complete mixing occurs in about
10 s. The heat transfer (local Nusselt number at the
top and the bottom) is also enhanced by about an
order of magnitude. If the frequency of vibration is
high. of the order of 100 Hz (for fixed Ray). then the
changes in heat and mass transfer due to vibrations
become less significant. This corresponds to earlier
experimental observations [7.8].

Our results show that both translational. circular
polarized and angular vibration can cause average
melt low for a range of parameters typical of prac-
tical semiconductor growth. For a given vibration
amplituds and frequency, circular polarized and
rotational {angular) vibrations result in more inten-
sive melt flows than translational ones.

The influence of forced vibration on g-jitter-in-
duced flows using SAMS microacceleration data
from the USML-2 mission (Fig. 7a) was also in-
vesticated. Motivated by the predictions of the
averaged equation theory presented in Ref. [11],
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Fig. 6. Temporal evolution of (a) species concentration C. min-
imum and maximum values of C. (b) velocity extrema V,, and (¢
V. for circularly polarized vibration applied to an oxide melt.
Ra = 7.25 x 103, Raf = 74 x 10°, Pr = 15, w = 10 Hz.

translational vibration was applied parallel to the
ampoule axis (and thus. the temperature gradient
in an attempt to damp unwanted irregular time:
dependent flow caused by g-jitter. While the flow
variation with time becomes more regular. we dic
not succeed in completely suppressing the g-jitte:
flow (see Fig. 7b).

We found that the use of the same amplitud
vibration in the direction orthogonal to the am
poule axis is more effective. This induces intensiv
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Fig. 7. Minimum and maximum values of the ¥, velocity com-
ponent versus time corresponding to a melt flow response to
g-jitter (a). g-jitter and longitudinal vibration. Rajf = T.23 < 10,
and (b) g-jitter and lateral vibration, Raf = 7.40 x 10*.

thermal vibration flows and flow disturbances
due to y-jitter become practically insignificant
(Fig. 7¢).

4. Conclusions

The influence of translational. circularly polari-
zed and rotational (angular) vibration in analysis in
a model Bridgman melt growth configuration was
investigated. The nature of the flows produced by

the types of vibration under consideration necessi-
tated the use of the full 3D equations governing the
transport of heat. mass and momentum. The gov-
erning equations were solved numerically. Flow
patterns for translational, circular polarized and
rotational (angular) vibrations and g-jitter micro-
accelerations were analyzed. For translational
vibration, thermovibrational flow is strongly de-

-pendent on the angle between the vibration direc-

tion and the temperature gradient. Circular
polarized and rotational vibrations result in more
intensive melt flows than translational ones. The
simultaneous action of g-jitter and translational
vibrations is currently being studied from the view-
point of using applied vibration as a means of flow
control.
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Abstract

A numerical solution for thermal convection flows in a
semiconductor melt with strong static magnetic field is
presented. Rectangular cavity with different aspect ra-
tios and gravity direction aligned and misaligned with
the magnetic field vector are considered. Three numeri-
cal methods are compared. Although. the generated flows
have extremely low velocity, the numerical solution of the
governing equations involved is very complicated due 10
the thin boundary lavers. It is shown that the finite ele-
ment approach with regularization can provide numerical
solutions in a wide range of Ha numbers (up to 1071, The
results compare favorably with the asymptotic theoretical
solutions.

1 Introduction

Application of magnetic fields is a promising appreach for
the reduction of convection during directional solidifica-
tion of electrically conductive melts. Current technology
allows the experiments with very strong static fieids (up
to 80 KGauss) for which nearly convection free segrega-
tion is expected in melts exposed to stabilizing tempera-
wre gradients (vertical Bridgman meits with bottom seed-
ing) {1].

However. the reported experimental studies have
vielded controversial results [21.[3). Therefore. the com-
putational methods are. a fundamental tool that may en-
hance our understanding of the phenomena occurring dur-
ing the solidification of semiconductor melts. Moreover.
the effects like the bending of the isomagnetic lines. dif-

ferent aspect ratios and misalignments between the grav-
ity and magnetic field vectors which are difficult to model
analvtically. be studied through numerical simulations.

The reported numerical models and results are not able
1o explain the published experimental data [4),{5]. The
computational task is complicated because of the thin
boundary lavers [6]. although velocity of the generated
flows is extremely low.

Here. for comparison. three different numerical ap-
proaches we have been used :

(1) The spectral method implemented in [71.

(2) The finite element method with regularization for
boundary layers {8].

(3) The multiquadric method. a novel method with global
radial basis functions [9].

The results obtained by these three methods are pre-
sented tor a wide range of Hartmann numbers correspond-
ing to magnetic fields B from 0.05 to 5.0 Tesla (0.5 to
50.0 KGauss). Comparison and discussion of accuracy.
efficiency. reliability and agreement with the asymptotic
solution are presented.

2 Governing equations

The 1wo dimensional steady state thermal convection ot
an incompressible viscous fluid (meit) in a rectangular
cavity having width D and hight H was considered. More
general geometries are discussed in [17], [18], [19].

The governing momentum. continuity and energy equa-
tions tusing the Boussinesq approximation) are respec-
tvelv:
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where length. time and velocity are scaled by L. L-/x and
/L respectively. Here Lis equal to the the smaller of
the two characteristic dimensions involved (D and H). and
K = 2 is the thermal diffusivity ot the melt. Fis a body
force due to magnetic field (Lorens torce). The Lorenz
force is given by

F = PrHG[(V x e) x ep) = (PrHa" VL 0) ()
where V) is the horizontal component of the velocity. The
electrical potential was neglected. because. when a ver-
tical magnetic field is applied. the electrical potential is
uniform Vo = O [1]. The electrical potential can not
be neglected if the symmetry is broken. e.g. if the mag-
netic field direction and the gravity vector are slightly mis-
aligned. However. to simplify the study. we neglect this
effect. According to [1]. Joule heating due 10 electromag-
netic field can be neglected as well. The nondimensional
temperature @ is scaled by @ = (T - T..) /AT AT =GL.
G is a vertical temperature gradient LT The Prandtl.
Ravieigi and Harrmann numbers are. respectively. given

by
v ATeL’ o
Pr=—.Ru= E—‘——.Hu:LBU —_
N VK vp
Here B.2.v.p.0 are thermal expansion coefhicient. grav-

iational acceleration. Kinematic viscosity. density. and
clectrical conductivity: By is the magnetic tield intensity.
¢.. e are the unitvectors in the direction of gravitational
acceleration and magnetic field.

The boundary conditions for eq. ¢ 1)-(3) are: (i) the
non-slip condition for the velocity. V = 0. on the walls.
and i) specined temperature distribution. ® = v on side
walls. and ©5 = —Og{x — L)* at the bottom. To exclude
the undetined constant. the pressure was sel 1o zero at an
arhitrary Jocation. p(xa.vo) = 0.

3 Problem parameters

The problem was solved using the properties of Germa-
nium (Ger melt exposed to magnetic fields having inten-
sity Boin arange from 010 5 Tesla rand in few cases up to

50 Tesla). The direction of magnetic field vector 1s axial,

¢g = (0.1). The corresponding Hartmann number varies

from Ha = 0 to 2170 (and in few cases to Ha=2.17- 104,

The flow domain is rectangular cavity having hight H

and width L. Two cases were considered (a) L = lem.
=2cm.and (YL =2cm, H =1cn.

The temperature gradient on a side wall is G =
70K /cm. The average lateral temperature gradient at
the bottom boundary was 0.5K/cm. The corresponding
Raylgigh number is Ra = 1.24-10%. Earth gravity g was
considered to be (i) aligned to the magnetic field direction.
g = go(0.—1) and (ii) misaligned by 0.5 degrees.

4 Numerical methods

Three numerical methods were used to solve the system of
eq. (1) - (3) for the boundary conditions and parameters
given above.

4.1 Spectral element method

To use the spectral element (SE) code NEKTON ([7]. the
domain was divided into quadrilateral elements. refined
near the walls (Fig. la). 8 x 8 Chebyshev polynomials
were used inside each of elements for field variables ap-
proximation. In our tests total number of elements was
362. The total number of unknowns was 5 - 107,

4.2 Finite element method with regulariza-
tion for the Navier-Stokes equations

The finite element method with regularization for the
Navier-Stokes equations (FEMR) was proposed in 8] for
high Re number flows. It was shown that such a regular-
ization works well in case of flows with thin boundary lay-
ers. even with few mesh nodes placed inside the boundary
layer. For the present problem. the continuity equation (2)
is modified as follows

V.V=1V.(Vp—F—RaPr-0-e) (5
where T is a small regularization parameter. For T — Oeq.
(5) approaches the original equation (2). The boundary
condition for the pressure on the wall 1s

(Vp—F—RaPr-@-¢,)-n=0. (&

where n is a unit wall normal vector. Egs. (5) and (6)
present the main feature of this method. and ensure the
balance of the component of the force normal to the region
boundary. This approach allows the use of the same order
finite element approximation for the velocity and pressure



with all unknowns located at the same nodal points. The
justification of this regularization is given in [ 10]. Similar
terms have been obtained as a result of the consistent treat-
ment of time-advancement for the divergence-equation by
Lohner (see {111, Lohner has also shown that similar
terms appear in the discrete equations as a result of ditfer-
ent order finite element approximations used for interpo-
lation of velocity and pressure.

The numerical solution is insensitive to the value of T.
In out calculations we have chosen the value of T within
the range 10~ 10 10~ and obtained nearly identical so-
lutions. For a smaller value of T the discrete equations
become nearly incompatible. and numerical solution ex-
hibits strong spatial oscillations.

Simple linear finite clements were used for numerical
approximation of velocity. pressure and temperature. Tri-
angular meshes with 40 x 100 and 80 x 100 nodes were
refined near the walls (Fig. 1b). Since on both meshes
vielded nearly identical results. we used the 40 x 100
mesh in most runs. Total number of nodes and unknowns
was respectively 4- 10° and 16-10°. The FEMINA/3D
CFD code (Finite Element Method IN Applications) [12]
was madified to implement the proposed regularization
method. Discrete finite element equations corresponding
1o the egs. (. (3) (3) were solved together simultane-
ously by the CNSPACK solver [12] using the CGS-type
iterative technigue and high order preconditioning by in-
complete decomposivon.

4.3 Multiquadric radial basis function

method

The Multquadric Radial Basis Function (MQ) Method
is 4 novel meshless collocation method with global ba-
<is functions. The concept of solving partial differenual
equations (PDE) using radial hasis functions {RBFs) was
introduced by Kansa in 1990 [9]. He implemented this
approach tor the solution of hyperbolic. parabolic. and
ellipue PDEs using the MQ RBFs proposed by Hardy
[131.114] tor interpolation of scattered data.

An RBF is a function that depends only upon the dis-
(ance between a point (v.v) and a reference node (xjoyj).
Among <tudied RBFs. oniy the MQ RBFs have been
proven o have an exponential convergence for the func-
tion interpolation [16]. A MQ RBF is given by g, {v.y) =

Sy — = (v =2+ where ¢ is called the shape
parameter. The numerical experiments for parabolic and
elliptic PDEs by Kansa {9] show high accuracy and effi-
ciency of the MQ scheme. A briet review on MQ RBF for
the solution of PDE can be found in [15] and on the RBF-
PDE Web «ite [22]. This approach results in modest size

systems of nonlinear algebraic equations which can be et-
ficiently solved by using widely available library routines
and linear solvers for dense matrices.

For a given set of N nodes the solution for unknown V.
por © is approximated as a sum of MQ functions with the
coefficients as unknown. These coefficients are found by
collocating governing equations at the internal nodes and
boundary conditions at the boundary nodes. The nonlin-
ear algebraic system is solved by Newton method.

.25 % 25 uniformly distributed nodes and constant shape
parameters ¢j = ¢Q = Const were used for all functions.
Total number of unknowns was 2500.

5 Results and discussion

5.1 Convection in rectangular cavity with

=7
—

The nondimensional parameters Pr = 0.006. Ra =
10°were used in all calculations.

.25

Flow without magnetic field: B=0, Ha=0

The flow domain has D = 1. H = 2 and the length scale
was L = D. The temperature distribution at the bottom
boundary is given by @g = —3.575- 1077(1 —4x7). The
results for the case o = 0 are shown in Fig. 2 (ot 1s the
angle between the gravity vector and the vertical axis).
The solution obtained by all three methods are nearly
identical. The flow is driven by radial temperature gra-
dient caused by parabolic temperature profile imposed on
the bottom boundary. The flow pattern consists of two
counter-rotating svmmetric cells. located at the lower cor-
ners. Note that the stabilized axial temperature gradient is
suppressing the flow.

If the direction of gravity vector is misaligned with the
ampoule axis by 0.5deg.. the flow pattern becomes quite
different. The component of gravity normal to the temper-
ature gradient becomes a driving force for the convection.
A single roll is formed. while the magnitude of meltl ve-
locity is higher by a factor of two to three.

Flows under magnetic fields
5.1.1 B =0.05 Tesla, Ha=21.7.

The MQ method did not vield a solution. because the
Newton method did not converge (since the Jacobian be-
comes ill-conditioned).

The solution by the SEM and FEMR methods show no-
table differences. The SE solution for the velocity field
exhibits numerical oscillations between the mesh nodes.



The flow pattern from FEMR 15 the same as in the absence
of a magnetic field (Fig. 3). The vertical velocity profile
at v = 0.25 shows a boundary layer. The flow velocny is
decreased by about a factor of two.

5.1.2 B =0.5 Tesla. Ha=217.

The boundary layer becomes very thin. and the tlow ve-
locity is about two order of magnitude lower compared
to B = 0 (not shown). The velocity profiles from the SE
computation exhibit spatial oscillation with velociny sign
change between mesh nodes. The FEMR can provide the
results still without difficulty. the velocity protiles remain
smooth.

5.1.3 B =5.0 Tesla, Ha=2170.

The results from the SE computation showed strong nu-
merical instability. The FEMR solution indicates that the
flow pattern is about the same. while the velocity 1s Jower
about two order of magnitude compared to B = 0.5 Tesla.
The boundary lavers are extremely thin (0.0lcn:. and
therefore almost invisible on a plot (Fig.4).

In case of a misalignment of gravitational acceleration
with ampoule axis. the flow pattern changes to one big cell
for this and all ather values of magnetic field consilered.

5.1.4 B =50 Tesla. Ha=21700.

This case was done just to test the ability of proposed
FEMR method. the solution still remains smooth with
even three times more thin boundary layer compared o
B = 5.0 Tesla. Stream lines for this case are shown in
Fig. 5.and the velocity amplitude is presented by the most
right point on a plot in Fig.6.

Stretching of the stream lines caused by the magnetic
field is shown in Fig. 5. This stretching presented
schematically in {1]. [5] but. o our knowledge. compu-
tational results were not shown.

Discussion

Figure 6 shows the maximum radial velocity calculated.
using the FEMR method. for different values of the im-
posed magnetic field B. The maximum of horizonial (ra-
dial) velocity versus B is presented by few curves. marked
as "Vrih)” for FEMR on 40x100 mesh uniform in the
vertical direction. by “Vr(f)" for 40x100 mesh rer:ned at
the walls and by “Vr(d)" for 80x100 mesh refined at the
walls. Results for misaligned case are presented v the
curve with squares. labeled as "Vr(a = 0.5)". One canob-
serve the predicted asymptotic dependence Vipas ~ Ha ™"

[1] for all the cases. starting at about B = 0.05 Tesla
(Ha=20).

The main computational difficulty of this problem 1s
due to the viscous flow with thin boundary layer. De-
spite the fact that actual tlow velocities are very low and
the Reynolds number obtained using the computed ve-
locities. is Re ~ 10~ 1o 107¢ , a big value of the Hart-
mann number results in a relatively small coefficient at the
highest derivative of the velocity in the momentum equa-
tion.. Solution of such a problem exhibits thin boundary
layer with the thickness & ~ Ha~', and the the “‘equiv-
alent” Reynolds number Re.q ~ Ha*, for B=0.5 Tesla
Reeye = 4.7-10% and B=50.0 Tesla Reeyr = 4.7 108.

5.2 Thermal convection in rectangular cav-

ity with aspect ratio H/D=0.5

The nondimensional temperature distribution at the bot-
tom houndary is given by ©p = —7.150- 1073 (1 = x°).
The axial temperature gradient applied on the vertical wall
is also G = 70 K/icm.

Flow without magnetic field: B=0, Ha=0

The solution obtained by all three methods are close to
each other. The flow pattern consists of two counter-
rotating symmetric cells. that occupy most of the volume.
Fig. 7.

In the case of the gravity misalignment with the am-
poule axis direction by 0.5 deg.. the axial temperature gra-
dient becomes a main driving force for the thermal con-
vection. This results in the change of flow pattern that
becomes consisting of one big convective cell.

Flow under magnetic fields

The results are shown in Fig. 8. Again when Ha number
is high. all the methods except FEMR, exhibit the same
difficulties as in a case of aspect ratio H/D = 2. A sum-
mary of the results is shown in Fig. 9. The suppression of
the flow is essentially same efficient as before with sim-
ilar asymptotic dependences Viar ~ Ha~*. The velocity
profile in the boundary layer obtained by FEMR is shown
in Fig. 10. One of the advantages of FEMR is that its so-
Jution remains smooth even at the big change of the slope.
One can see that the thickness of the vertical boundary
layer is in agreement with asymptotic solution. §~Ha .
The tangent velocity derivative at the boundary decreases
with Ha number as %‘% ~ Y~ Ha™t.

Comparing between Fig. 6 and 9 it is found that mis-
alignment’s impact on the reducing of the convection is
more important for the aspect ratio H/D=1.



Conclusions

We compared three different numerical methods for the
solution of thermal convection flows in a semiconduc-
tor melt with strong static magnetic field applied. These
are spectral element method. finite element method with
regularization for the Navier-Stokes equations and mul-
tiquadric method. a method with ¢lobal basis functions.
Although the generated flows are extremely low. the com-
putational task 1s very complicated because of the thin
boundary layer at high Hartmann numbers. Ha> 1. We
considered melt region geometry with different aspect ra-
tios. and gravity direction aligned and misaligned with the
magnetic field vector. The comparison shows that the fi-
nite element approach with regularization can obtain sta-
ble and reliable solutions in a wide range of Ha number,
up to 10*. These results compare favorably with asymp-
totic solutions.

The main difficulty of this problem is that a flow has
a verv thin boundary layer. Despite the tact that ac-
tual Revnolds number is very low. Re ~ 10=! 10 107°
. a high value of the Hartmann number results in a rel-
atively small coefficient at the velocity Laplacian in the
momentum equation. Solution of such problem exhibit
thin boundary layers with related. like for hich Reynolds
number fows. difficulties. That is one of the reasons for
the discrepancy in the results that numerical studies re-
ported. Both the spectral method and the multiquadric
method with global basis functions needs improvement to
deal with thin boundary layers. Multilevel approximation
by Fasshauer [20].[21] can be one of the ways.

Numerical solution of these problems by available
commercial CFD codes may be not efficient or not possi-
ble. Adaptive algorithms can be a promising solution. De-
velopment of more accurate and efficient solution meth-
ods for this problem is necessary.
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Figure 1: Meshes used in: (a) Spectral elements calculations (each element has 8 x 8 internal nodes) and (b) finite
elements calculations (8.000 triangular with 4000 nodes).

dos M ! 4

VELOGHTY Vy
k=3
5]

o
B

S0 " - A N "
- R Qd

DISTANGCE X

(c)

Q)

Figure 2: H/D=1.Ra= 125" 10° (B=0.5 Tesla). Stream functions for gravity vector (a) aligned and (b) 0.5 degrees
misaligned relative to the vertical direction. (¢) Nondimensional vertical velocity profile V. (x)/(0.225 cm/s) calculated
using the FEMR method 0.25H from the bottom of the cavity (v/H = 0.25)
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Figure 4: Thermal convection with magnetic field tor D= 1. H = 2. Ra = 1.25.10°. Ha = 2170.0 (B = 5.0 Tesla):
(a) stream function: (b) vertical velocity profile Vo x)/(0.225 cm/sy at y = 0.25: (¢) velocity profile Vi {x)/(0.225 cm/s)
for misaligned by 0.3 degree gravity direction at v = 0.25.
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Introduction

The character of natural buoyant convection in rigidly contained inhomogeneous fluids can be
drastically altered by vibration of the container. For certain experiments and operating
conditions. vibrations are expected to have a significant influence on heat and mass transfer
onboard the International Space Station (ISS). Furthermore. it appears that g-jitter vibrations will
exist on ISS over a wide range of frequencies [1]. In general. vibrational flows are very complex
and are governed by many parameters. This complexity makes it almost impossible to correctly
predict vibrational effects empirically. Thus, a careful theoretical approach combined with
numerical modeling is essential. Available flight experiment data clearly show that. once
initiated by “g-jitter”, the effects of convective flows can persist for long times even when the g-
jitter disturbance (and consequent flow) were short-lived [2-7].

In many terrestrial crystal growth situations, convective transport of heat and constituent
components is dominated by buoyancy driven convection. Control of convective transport
continues to be an important aspect of crystal growth research. Several groups are actively
pursuing control of convection using static and rotating magnetic fields. Magnetic fields cannot
be used for flow control in melts and solutions that are poor conductors. Flow suppression
through vibration or vibro-convective mixing may offer an attractive alternative in such cases.

Recent work has shown that the character of natural buoyant convection in non-uniformly heated.
rigidly contained inhomogeneous fluids can be drastically altered by vibration of the container. A
review and relevant theoretical and experimental research can be found in publications [1-13].
Thus. vibrational induced flow can potentially be used to influence and even control transport in
some crystal growth situations. A practical quantitative understanding of vibrational convection
as a control parameter in crystal growth situations is currently not available. The objective of the
work is 1o assess the feasibility of the use of vibration to suppress. or control. convection in order
to achieve transport control during crystal growth.

Buovancy driven vibro-convective motion occurs when oscillatory displacement of a container
wall induces the acceleration of a container wall relative to the inner fluid. The vibration may be
viewed as a time-dependent modulation of steady gravity. In a closed container the fluid will
move as a rigid body with a container. If. however. the fluid density is nonuniform. fluid motion
may ensue. The magnitude of this motion. of course. depends on the orientation of the vibrational
direction with respect to the local density gradients. Note that. similar to Rayleigh-Benard
configurations. there may be a “critical” threshold for the coupled vibrational frequency and
amplitude. to cause convection. Interestingly. it should be noted that in case of a constant density

fluid subject to spatially nonuniform vibration. fluid motion can also occur (for example. angular
vibration [111).

To properly investigate influence of translational. circularly polarized and rotational (angular)
vibration necessitates the use of the full 3D equations governing the transport of heat. mass and
momentum. Selected examples of our ongoing work on this topic are outlined below.



We consider a purely thermo-vibrational convection in a differentially heated cylindrical cavity
with no consideration of solidification. The fluid is taken to be Newtonian and the Boussinesq
approximation is assumed to hold. The calculations were performed for identification and
characterization of thermovibrational flow and are part of an ongoing project involving flow
visualization model experiments being conducted by Feigelson [10]).

Mathematical model for translational and polarized vibration

Translational vibration corresponds to a linear displacement such as, for example, u=d coswr.
where d is a real vector giving the displacement magnitude and @ is the frequency. In this case
the ampoule is displaced back and forth upon the same line. Polarized vibrations are
characterized by a displacement u = Re{de"“"} where d =d, — id, (see Fig. 1(a.b)). Here the
instantaneous vibration direction rotates in the polarization plane defined by the real vectors
d,and d.. A sketch showing both translational and circular polarized vibrations is presented in
Fig.1. In a reference frame fixed to a vibrating ampoule. the momentum equation is
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where length. time and velocity are scaled by Ry, Ry2/x and K/Ry. Here Ry is the ampoule radius

and X is the thermal diffusivity. The nondimensional concentration and temperature. are given by

© . and C. respectively. The function f (£2.1) is the acceleration of the vibrating ampoule and

Q=wR; /x is a dimensionless frequency. The continuity and heat-mass transfer equations

complete the problem formulation. The Prandtl. Schmidt. thermal and vibrational Rayleigh
numbers and the buoyancy ratio are given by
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Here 8 and B are the thermal and solutal expansion coefficients and AT. c_, g, d. @w. k. v, D are
the characteristic longitudinal temperature difference. reference concentration in the melt.
gravitational acceleration. vibrational displacement amplitude and frequency, direction of
gravity. Kinematic viscosity and solute diffusivity, respectively. The dimensionless number Ra*r
is the vibrational Rayleigh number and Ra*s = &t Ra*r. Equation (2) is solved together with the
equations governing heat and species transfer and the continuity equation.

Rotational vibration

The equations of motion for angular vibrations take on a more complicated form (see Fig. 1¢). A
container of length L is subjected to an angular displacement 8(1) in the x;*-x3* plane. Here the
coordinates x * are referred to a fixed laboratory frame of reference. The position vector to the
mass center of the cylinder is parallel to the side of the cylinder and is given by g = Ro[-sinbi,* +
cos 6i:*] where Ry is the distance from the origin 0* to the mass center of the cylinder and 6(1) =

€ sin&2:t. In a frame of reference moving with the container. the equations of motion have the
form
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where D/Dt denotes the material derivative. v is the velocity of the fluid relative to the moving

reference tframe. p is the density of the fluid. Q is the rate of rotation tensor for the moving

frame with respect to the fixed frame of reference. Q is its time derivative and T is the
Newtonian stress tensor for the tluid. The dimensionless equations governing the transport of
momentum. mass and heat in the cylinder are obtained after using L, L2/, /L. and AT =Ty - T¢
to scale. respectively, length. time. velocity and temperature. The governing dimensionless
parameters are the dimensionless frequency 2= QyL>/x, , the dimensionless container radius. ¥
= R¢/L. the Prandtl. Pr. and the Rayleigh. Ra. vibrational Rayleigh Rag, and Ekman. E.
numbers. The latter are given by

y ) 5 3 .4 ,
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where B. v. g and K are the coefficient of thermal expansion. kinematic viscosity. gravitational
acceleration and thermal diffusivity. respectively. This system of equations differ from the usual
equations in the absence of rotation in that additional terms are present: the Coriolis term which
is proportional to éPr/E. and the centrifugal term which 1s proportional to e29Ru oPr and varies
with linearlv with position in the ampoule. The importance of the latter term depends on the
dimensions of the amplitude of the angular vibration. €. and the ratio 9. The rocking motion of
the angular vibration under consideration means that centrifugal terms give rise 10 & periodic
forcing that fluctuates about the mean value at twice the period of the angular vibration.

Since the above system of equations has not been well studied. a conservative approach was
adopted for the study of angular vibrations and we confine our investigation to a parametric study
of flow regimes and transitions for thermo-vibrational situations in the absence of solidification.

Solution method

The equations are solved in primitive variable form using a Finite Element Method code
FEMINA/3D developed by the PI[14]. The continuity equation and momentum equations are
considered simultaneously at each time step. This eliminates many problems related to boundary
conditions and places only slight limitations on the time step size for transient problems. The
regularization for the incompressibility condition makes the solution procedure more efficient.
and allows the same order finite element approximation for both the velocity and pressure [15].
This approach makes it possible 10 solve large 3D time-dependent problems (up to 300.000
unknowns) on a SGI 02 workstation with reasonable computation times.

We implemented the above 3D models of convective buovancy-driven melt flow in differentially
heated cvlindrical containers using the FEMINA/3D code. This code was carefully tested on
benchmarked experimental and numerical data for a variety of 2D/3D viscous and thermo-
convective flow problems and flows under magnetic field [15.16,19].

. . . -4 =S .
For rotational vibrations the Ekman number can be of the order 10 to 10 ~ for frequencies on
the order of 1Hz. This results in large coefficients. Pr/E. for the Coriolis terms in the governing



equations and causes difficulties in the numerical solution. To resolve this we implemented a
high accuracy solution method using preconditioning by high order incomplete decomposition

-0 . . 1
(accuracy up to 10 ). The computation tmes reduced by one to two orders of magnitude and the
memory size by a factor of 8 for 3D flows compared to currently available commercial codes
(e.g. CFD2000). A typical solution time for a transient problem is about two hours on a SGI O2.

Results and discussion

We verified the validity of the Boussinesq model for seiniconductor and oxide melts under
microgravity conditions. This topic has been discussed recently by Perera. Sekerka [17],
Pukhnachev [18] and Gershuni. Lyubimov [11]. If the nondimensional criteria, proposed by
Pukhnachev. Pu = gL’ v/ k! is less than 1. then the Boussinesq model for thermal convection
may not be valid. Our estimates show that the Boussinesq model is quite adequate for a
differentially heated closed ampoule and the range of parameters and material properties under

investigation. The values of Pu are of the order 10" to 10° for semiconductor and oxide melts for
o/ g0 = 107 to 10, clearly well above 1.

A parametric study of translational and rotational vibrations under typical microgravity and
terrestrial conditions for typical semiconductor melts was performed. A snapshot of a typical
flow pattern for translational vibration is presented in Fig. 2(a). Even in the total absence of
gravity the vibrations have resulted in detectable flows. For the cases examined. the temperature
distribution remains almost unperturbed (due to the low Pr and weak flow strength).

The angle between the direction of vibration and the ampoule has been studied for translational
vibrations in the presence of an axial temperature gradient. At high frequencies and when the
angle is zero. no influence of the vibration on the flow was observed. even when vibrational the
Raleigh number is very high. The maximum observed effect corresponds to an angle of 90
degrees. Here transport is significantly enhanced.

Tyvpical flow patterns for rotational vibrations flow regimes are presented in Fig. 2(b). Maximal
velocity values are observed at the end of the ampoule that is farthest from the rotation origin.
The influence of vibrations on heat and mass transfer becomes significant for oxide melts due to
their low thermal diffusivity (Pr ~ 10). These flow patterns are shown in Fig. 3(a) for the case of
circular polarized vibration. Initially (at time 1 = 0), the species concentration was c=1 at the
lower quarter of the cylinder and ¢ = 0 elsewhere. The evolution of the species concentration
(process of mixing) and velocity (minimal and maximal values of V.) is shown in Fig. 3(b.c).
Complete mixing occurs in about ten seconds. The heat transfer (local Nusselt number at the top
and the bottom) is also enhanced by about an order of magnitude. If the frequency of vibration is
high. of the order of 100Hz (for fixed Rug). then the changes in heat and mass transfer due to
vibrations become less significant. This corresponds to earlier experimental observations (7. 8].

Our results show that both translational. circular polarized and angular vibration can cause
average melt flow for a range of parameters typical of practical semiconductor growth. For a
given vibration amplitude and frequency. circular polarized and rotational (angular) vibrations
result in more intensive melt tflows than translational ones.

The influence of forced vibration on g-jitter induced flows using SAMS microacceleration data
from the USML-2 mission was also investigated [13]. Motivated by the predictions of the
averaged equation theory presented in Ref. [11], translational vibration was applied parallel to
the ampoule axis (and thus. the temperature gradient) in an attempt to damp unwanted irregular



time-dependent flow caused by g-jitter. While the flow variation with time becomes more
regular. we did not succeed in completely suppressing the g-jitter flow. We found that the use of
the same amplitude vibration in the direction orthogonal to the ampoule axis is more effective.
This induces intensive thermal vibration flows and flow disturbances due to g-jitter become
practically insignificant.

Summary

The influence of translational, circularly polarized and rotational (angular) vibration in analysis
in a mode! Bridgman melt growth confi guration was investigated. The nature of the flows
produced by the types of vibration under consideration necessitated the use of the full 3D
equations governing the transport of heat. mass and momentum. The governing equations were
solved numerically. Flow patterns for translational. circular polarized and rotational (angular)
vibrations and g-jitter microaccelerations were analyzed. For translational vibration,
thermovibrational flow is strongly dependent on the angle between the vibration direction and
temperature gradient. Circular polarized and rotational vibrations result in more intensive melt

flows than translational ones. The simultaneous action of vibrations and magnetic field [19] 1s
currently being studied.
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Fig. 1:Translational vibration (a). d, or d, = 0: polarized vibration (b), d;, d,#0; ¢ is the angle between gravity
vector and the ampoule axis. & is the angle between the vibration direction and the ampoule axis: (c) rotational

(angular) vibration. The container is rotated at an angle 6(t) about a center of rotation at x* = 0. The vector g*
connects the center of rotation to the mass center of the container.
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Fig. 2: (a) Instantaneous 3D flow patterns for a lateral translational vibration at 0g, Ra = 0, Rar = 7.25-10°.
Pr=0.01. @ = 100Hz. The velocity components are V,,V,,V.. P is the pressure. T is the temperature. AT is the
temperature disturbance and [V1 - velocity magnitude. The grayscale range corresponds to maximum values (white)
of the velocity. temperature and pressure variables 10 their minimum values (black). Vibrations are applied along the
horizontal (x-direction); (b). 3D melt flow patterns for angular vibration at zero-g, Ra=0, Ra,= 4.6 - 10°, Pr =0.01.
w = 100H.
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Fig.3: (a) 3D flow patterns for circularly polarized vibration, Ra = 7.25 - 10°. Ra 7.4-10° Pr=15, @ =10Hz., Cis
the concentration: (b) Temporal evolution of velocity extrema V., and. (b) species concentration C.
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The Multiquadric Radial Basis Function (MQ) Method is a meshless collocation method with

global basis functions.
lems. We descretize nonlinear elliptic

It is known to have exponentional convergence for interpolation prob-
PDEs by the MQ method. This results in modest-size

systems of nonlinear algebraic equations which can be efficiently continued by standard contin-
uation software such as AUTO and CONTENT. Examples are given of detection of bifurcations

in 1D and 2D PDEs. These examples show high

accuracy with small number of unknowns, as

compared with known results from the literature.

1. Introduction

Nonlinear multidimensional elliptic partial differen-
tial equations (PDEs) are the basis for many sci-
entific and engineering problems, such as viscous
fluid flow phenomena. chemical reactions, crystal
growth processes. pattern formation in biology, etc.
In these problems it is crucial to understand the
qualitative dependence of the solution on the prob-
lem parameters.

During the past two decades the numerical con-
tinuation approach has become popular for qual-
itative study of solutions to nonlinear equations,

*E-mail: alex@uahtitan.uah.edu
“E-mail: friecdman@math.uah.edu
‘F-maii: kansal @linl.gov
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see e.g. [Rheinboldt, 1986; Allgower & Georg,
1990; Doedel et al., 1991; Seydel, 1998] and ref-
erences therein. Several software packages, such
as AUTO97 [Doedel et al., 1997] and CONTENT
[Kuznetsov & Levitin, 1995-1997], are currently
available for bifurcation analysis of systems of non-
linear algebraic equations and ODEs, with only
limited bifurcation analysis for 1D elliptic PDEs.
For 2D PDEs, we mention the software package
PLTMG [Bank, 1998] that allows to solve a class of
boundary value problems on regions in the plane,
to continue the solution with respect to a pa-
rameter and even to compute limit and branching
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points. This software combines a sophisticated fi-
nite element discretization with advanced linear al-
gebra techniques. Numerical continuation for 1D
and 2D elliptic PDEs is currently an active re-
search area, see e.g. [Neubert, 1993; Shroff & Keller,
1993; Schwetlick et al, 1996; Chien et al., 1997;
Davidson, 1997; Kuznetsov et al., 1996; Chien
& Chen, 1998; Doedel & Sharifi, to appear| and
[Govaerts, 2000, Chap. 10} for reaction-diffusion
equations; and [Mamun & Tuckermann, 1995;
Poliashenko & Aidun, 1995] for CFD. The typi-
cal approaches used are based on the finite ele-
ment or finite difference discretization of the PDEs.
They result in very large (thousands or tens of
thousands for 2D problems) systems of nonlinear
algebraic equations with sparse matrices. The
continuation process is typically based on the
predictor—orrector algorithms that require solving
nonlinear systems by the Newton type method at
each continuation step. For the bifurcation analysis
during the continuation process, one usually needs
to compute at least a few eigenvalues of the Jaco-
bian matrix at each continuation step. The meth-
ods currently used both for the continuation and
the corresponding eigenvalue problems are variants
of Krylov subspace methods and recursive projec-
tion (RPM). Solving the resulting linear system and
the eigenvalue problem require sophisticated algo-
rithms and considerable computer resources (CPU
time, memory, disk space, etc.).

In this paper we report results of numerical
experiments with continuation and detection of bi-
furcations for 1D and 2D elliptic PDEs discretized
by the Multiquadric Radial Basis Function (MQ
RBF or, simply, MQ) method. The MQ method. in-
troduced for solving PDEs in [Kansa, 1990a, 1990b],
is a meshless collocation method with global basis
functions which leads to finite-dimensional prob-
lems with full matrices. It was shown to give
very high accuracy with a relatively small number
of unknowns (tens or hundreds for 2D problems).
The corresponding linear systems can be efficiently
solved by direct methods. This opens a possibil-
ity for using standard continuation software. such
as AUTO and CONTENT, designed for bifurcation
analysis of modest-size problems. We also note that
the MQ method does not require predetermined lo-
cation of the nodes as the spectral method does.

In Sec. 2 we summarize previous results on
solving PDEs by the MQ method. In Sec. 3 we
formulate an adaptation of the MQ method suit-
able for the discretization of parametrized elliptic
PDEs. In Sec. 4 we present results of our numerical

experiments with a 1D eigenvalue problem and in
Sec. 5 we present results of our numerical experi-
ments with continuation of solutions and detection
of bifurcations for 1D and 2D elliptic PDEs. In
Sec. 6 we discuss our results.

2. Review of the MQ Method
for Elliptic PDEs

" The concept of solving PDEs using radial basis

functions (RBFs) was introduced by Kansa in 1990
(1990a, 1990b]. He implemented this approach for
the solution of hyperbolic, parabolic, and ellip-
tic PDEs using the MQ RBFs proposed by Hardy
(1971, 1990] for interpolation of scattered data.

There exists an infinite class of RBFs. An
RBF is a function fj{(z) € R, z € R (say, in
1D case) that depends only upon the distance be-
tween z and a reference node z;. A MQ RBF is
g5(cj, ) = ((z—z;)° +¢c2)1/2, where c; is called the
shape parameter. In a comprehensive study, Franke
(1982] compared (global) RBF's against many pop-
ular compactly supported schemes for 2D interpo-
lation, and he found that the global RBF schemes
were superior on six criteria. Among the studied
RBFs still only the MQ RBF's are proven to have
an exponential convergence for the function inter-
polation [Madych & Nelson, 1990; Wu & Shaback.
1993]. Madych [1992] showed theoretically that
the MQ interpolation scheme converges faster as
the constant MQ shape parameter becomes progres-
sively larger.

The numerical experiments for parabolic and
elliptic PDEs by Kansa [1990a, 1990b} and
Golberg and Chen [1996] show high accuracy and
efficiency of the MQ scheme. For example, for
a 1D convection—diffusion problem, Kansa [1990b]
showed that the MQ solution with 20 nodes had the
maximum norm error within 104, while a second-
order finite difference scheme with K = 200 nodes
and an optimal combination of the central and up-
wind differences for the problem resulted in a much
larger error of 3 - 102,

In the numerical experiments with a nonlin-
ear time-dependent problem modeling the 1D von
Neumann blast wave Kansa (1990b] compared the
exact solution and its derivatives with the MQ so-
lution (35 nodes) and with a second-order finite dif-
ference one. The error in the maximum norm for
pressure, density, energy and their gradients was
105 or less for the MQ method, and in the range
from 10=% to 10~2 for the finite difference method
with 5000 nodes.



Golberg and Chen [1997] showed that the solu-
tion of the 3D Poisson equation in an ellipsoid could
be obtained with only 60 randomly distributed
nodes to the same degree of accuracy as a FEM
solution with 71000 linear elements.

Sharan et al. [1997] showed that the MQ
method yields accurate solutions for 2D Poisson and
biharmonic equation, and that the MQ approach

is simple to implement on domains with irregular |

boundaries. Cook et al. [1993] noted many benefits
of using MQ RBFs to solve an initial value problem
for a 3D nonlinear equation for the collision of two
black holes. The resulting discrete system had 2000
unknowns and was solved directly.

Buhmann [1995] showed that RBFs and, in
particular, MQ RBFs are useful for construct-
ing prewavelets and wavelets. Wavelets are most
frequently used in time-series analysis, but there
are results for using wavelets to solve PDEs
[Fasshauer & Jerome, 1999; Narcowich et al.,
1999]. As Buhmann points out, one can gener-
ate true wavelets by an orthonormalization process.
The wavelets are an elegant way to achieve the
same results as multigrid schemes. The MQ RBFs
are attractive for prewavelet construction due to
exceptional rates of convergence and their infinite
differentiability.

The paper by Franke and Schaback [1998] pro-
vides the first theoretical analysis for solving PDEs
by collocation using the RBF methods.

Kansa and Hon [1998] studied several methods
for solving linear systems that arise from the MQ
collocation problems. They studied the 2D Pois-
son equation. and showed that ill-conditioning of
the system could be circumvented by using block-
partitioning methods.

Kansa [1990b] introduced the concept of vari-
able shape parameters c; in the MQ scheme that ap-
peared to work well in some cases. In [Kansa & Hon,
1998]. a recipe for selecting c; based upon the local
radius of curvature of the solution surface was found
to give better results than a constant ¢; MQ scheme.
Kansa and Hon [1998] tested the MQ method for
the 2D Poisson equation with a set of exact solu-
tions F = explaz + by), cos(az + by). sin(az + by),
log(az + by + ¢), exp(—a(z — 1/2)2 — bly — 1/2)2)
and arctan(az + by). They obtained an accuracy
up to 10~3 using a modest size, 121. set of nodes,
while locally adapting the shape parameter c;.

The multizone method of Wong et al. [1999]
is yet another alternative method for improving

computational efficiency. This method is readily
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parallelizable, and the conditioning of the resulting
matrices are much better.

Hon and Mao [1998] showed that an adaptive
algorithm that adjusted the nodes to follow the
peak of the shock wave can produce accurate re-
sults in 1D Burgers equation with only 10 nodes,
even for steep shocks with Re = 104,

3. 'Discretization of Nonlinear Elliptic

PDEs by the MQ Method

We consider the second-order system of n para-
metrized nonlinear elliptic partial differential
equations

D(Q)Au - f(Vu, u, T, ¥, a) =0,
a€eR, ul), f()ER? (z,y) €NC R?,

where D(a) is a positive diagonal n x n matrix that
is dependent smoothly on «, subject to boundary
conditions

Jid (%:—L, U, T, Y, a)\aﬂ =0, fb)eR*. (2

Here a is a control parameter, and we are interested
in studying the dependence of the solutions to the
boundary-value problem (1), (2) on .

We discretize the continuous problem by the
multiquadric radial basis function (MQ) method
[Kansa, 1990a, 1990b; Madych & Nelson, 1990] as
follows. Introduce a set O of nodes (N internal
and N, on the boundary)

O = {(zi, yi)li=1, ¥ C X,

(zi, ¥i)li=N+1, N+N, C O}

and look for the approximate solution to (1), (2) in
the form [Madych & Nelson, 1990]

j=N+N¢,
'U.h_(.’L', y) =ap + Z a_’]g](c]v z, y)a (3)
=1
where Z;_:IIVJ’N" a; = 0. We use this relationship to
eliminate ay from (3) which results in
Uh(l', y)
j=N-1
=ao+ Y. aj{g;(c;, T, y) —gnlen, 2, y))
j=1
j=IV+Nb
+ Z a](gj(c_]' z, y)—gN(CN!'rv y))a

(4)
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where a; € K" are the unknown expansion coeffi-
cients and
gle ty)=\J@-z) +{y-y)+q,

JZI”N_{'_‘Vb

are the MQ basis functions, and ¢; > 0 are called
shape parameters [Kansa, 1990b]. We then substi-
tute up(z. y) into (1), (2) and use collocation at the
nodes O to obtain a finite-dimensional system

= D(a)Aup(zi, ¥i)

- f(Vup(zi, ¥i)s un(®s, Yi)s To, Yis @) =0,

i=1,.... NV, (5)

Oun(zi, yi)
f° (T un(Ziy Vi), Ti, Yis a) =0,

i=N+1,..., N+ N, (6)

where a' = (ag,...,an-1) € RN @2 =
(AN41s---. AN+N,) € R"*Nb  We next modify the
discretized system to make it more suitable for con-
tinuation and bifurcation analysis. (1) We elimi-
nate a®, associated with the boundary nodes, so as
to minimize the number of unknowns. (2) We refor-
mulate the resulting problem in terms of (internal)
nodal values u; = up(zi, ¥i), ¢ = 1...., N, so as to
have the correct eigenvalue problem (to avoid deal-
ing with matrix pencils) for the Jacobian matrix of
(5) for detecting bifurcations during the continua-
tion process. This is accomplished as follows.

1. We solve (6) for a? (assuming that the Implicit
Function Theorem is applicable here) to obtain

a’® = ¥(a!, a), or, in components,
a, = v(al. ), (7)
J=N+1,..., N+ N;.
Substituting this into (5) and using the notation
© = (¥1...., PN). yields
slal w(al, @), a)=0. o) eRVN . (8)

2. We now want to reformulate (8) in terms of the
nodal values U = (uy, ug,.... ux}) € R N To

this end, we first eliminate a? from (4) by sub-
stituting (7) into (4) to obtain

Uh(.'r, y)
j=N-1
=ao + a;(g;(c;, z, y¥) — gn(en, T, ¥))
j=1
j=N+N5
+ Z wj( , @)(gjlcj, T, )
j=N+1
- gnlen, z, ) -

(9)

We now define the map ' : a! — U = ['(al).
Fori=1,..., N:

j=N-1

wi=a+ »_ (g5(¢5, i, ¥i)
=1

- gN(CIV) Iy, yl))a.]

j=N+Ny

+ Y (g5ley, m W)

j=N+1

- gN(CJVv z, yi))wj(ala a) (10)

Finally, substituting a* = T~}(U) into (8),

we arrive at the finite-dimensional continuation
problem

G(U.a)=0, U,G()eR™N, aecR, (11)

where

G, @) = p(T71(U), »(L~H(U), @), ),
[:RY 5 RY, y(-) € R

Remark 1. Note that in the case that the bound-
ary condition (2) is linear, 1; are linear, and con-
sequently T’ is an N x N matriz.

In Sec. 5 we consider examples of continuation
of 1D PDEs with @ = (0, 1) and 2D PDEs with
Q = (0, 1) x (0, 1). In all 2D examples we have the
same number of nodes N in = and y directions. We
choose a constant shape parameter c; = s/(Ns—1).
Our typical choice for s is 4 < s < 12.

We use two types of node distributions. In
the case of uniform node distribution (zk, Y1) =
(kh.lR), k, 1 =0,..., N, h = 1/N;. In the case



of nonuniform node distribution, the nodes adja-
cent to the boundary 9 are placed at the distance
h = hih from 89, 0.1 < hy < 0.5, while the remain-
ing nodes are distributed uniformly. A criteria for
the choice of h; was a minimum of Ly-norm of the
residual in €2.

4. Numerical Experiments for
a 1D Eigenvalue Problem

Accurate approximation of eigenvalue problems is
essential for bifurcation analysis of PDEs. We
have not found references in literature on the MQ-
solution of eigenvalue problems. We therefore
present here results for an eigenvalue problem for
1D Laplace operator. For details on the MQ dis-
cretization see Sec. 3. This is a scalar problem

v =Xxu, u(0)=u(l)=0, (12)

that has the exact solution:
(Am, U™(z)) = ((rm)?, sin(rmz)),
m=1,2,...

where (Am, U™(z)) is the mth eigenpair of (12).
Introduce the mesh z, = nh, n = 0,1...., N,
h = 1/N, and consider the standard second-order
finite difference (FDM) discretization of (12):

_un+1 — 2up + Un-1 = \u
h2 Ty (13)

n=1,...,N-1, uy=un=0.

The corresponding approximate eigenpairs are
given by

[ sin ]
N
sinW2m
(/\fn, U,’,‘L)= 4N25inzg—g—, N ,
. (N -1)m
\ [sin =
m=1,...,N-1.

We also solved (12) using the MQ discretization for
several values of the number K of internal nodes.
Denote by (A%Q, U,’,YQ), m = 1...., K the corre-
sponding approximate eigenpairs.

The results of our computations are summa-

rized in Table 1. We use the notation silQ, 5{{ for
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the relative errors in AMQ, AR | respectively, and the
notation E?JJQ for the Loo-norm error in UMQ. For
each MQ solution we provide a comparison with the
FDM solution that has a sufficient number of nodes
to give the same accuracy for Ay as the MQ method.
In Part (a) of the table we use the uniform node
distribution for the MQ method. Part (b) of the
table shows that the accuracy of the MQ method

_ can be significantly improved by adapting the node

distribution: we moved only two nodes adjacent to
boundary to reduce their distance from the bound-
ary to hj = h/4 (while the remaining nodes are
distributed uniformly).

One can see that the MQ method can give a
highly accurate solution with a small number of un-
knowns, 10-100 times smaller than the number of
unknowns in the FDM for the same accuracy.

5. Numerical Experiments for
1D and 2D Elliptic PDEs

We present several examples of continuation of so-
lutions to systems of nonlinear 1D and 2D ellip-
tic PDEs. Each problem is discretized by the MQ
method described in Sec. 3. We then perform con-
tinuation of the resulting system of algebraic equa-
tions (11) with AUTO97. The principal goal of our
examples is to assess the accuracy of the detection
of bifurcation points. We compare our results with
some published results and, in one case, the results
of our computations with an example in AUTO97
and CONTENT. We will use throughout the nota-
tion K for the number of unknowns in a particular
method. For our MQ method K = nx N, wheren is
the dimension of the system and N is the number of
internal nodes. We denote by MQ(u) and MQ(nu)
our MQ method with the uniform and nonuniform
node distributions, respectively.

Example 1. 1D Gelfand-Bratu equation. This is
a scalar problem

u’ + Xe* =0,
u(0) =u(l) =0,

inQ=(0,1),
(14)

that appears in combustion theory and is used as
the demo example exp in AUTO97 [Doedel et al.,
1997) (fifth-order adaptive orthogonal spline collo-
cation method) and demo example brg in CON-
TENT [Kuznetsov & Levitin, 1995-1997] (third-
order adaptive finite difference method). There is
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Table 1. A 1D eigenvalue problem: comparison of results for eigenvalues, results for eigenfunctions.

(a) The MQ method with a uniform node distribution for K =5, 7 and 9.

m Am (Exact) MR K =5 Rel. Err. Ef\WQ Rel. Err. syo Rel. Err. %, K =47
1 9.86961 9.86596 3.7 x 107° 3.7 x 1074 3.7 x 107%
2 39.4784 39.6492 43 x107° 52 x 107° 1.5 x 1073
m Am {Exact) MM K =7 Rel. Err. si'{Q Rel. Err. E,AJ"Q Rel. Err. €%, K =76
1 9.86961 9.86821 1.4 x107* < 99x107° 1.4 x107°
2 39.4784 39.4738 1.2x1074 18 x 1071 57 %1074
3 88.8264 89.3648 6.0 x 1073 1.1 x 1072 1.3x 1073
m Am (Exact) MO K =9 Rel. Err. efm Rel. Err. e[AfQ Rel. Err. €&, K = 117
1 9.86961 9.86901 6.0 x 107° 5.0 % 107° 6.0 x 1073
2 39.4784 39.4846 1.6 x10°* 2.1x 1074 2.4 x 107
3 88.8264 89.1667 3.8 x 1073 7.3 x 1077 54 x 107
4 157.913 159.689 1.1 x 1072 2.5 x 1072 9.6 x 1074

{b) The MQ method with nonuniform node distribution for K = 7 and 9.

m  Am (Exact) AM@ K =7 Rel Emr. eM?  Rel Emr. ¢/  Rel Ermr. <}, K =3477
1 9.86961 9.86961 6.8 x 1078 3.0 x10°¢ 6.8 x 1078
2 39.4784 39.4782 3.2x107° 30x 1074 2.7x 1077
3 88.8264 88.8139 1.4x1074 6.5 x 1071 6.1 x 10~7
m  Am (Exact) AMQ K =9  Rel Em. ey  Rel Ermr. e Rel. Err. ¢, K =950
1 9.86961 9.86960 9.1x 1077 2.3 x 1078 9.1x 1077
2 39.4784 39.4783 1.4 x 1078 20x 107° 3.6 x 1078
3 88.8264 88.8241 26 x 1073 1.8 x 107 82 x 107°
1 157.913 157.882 1.9 x 1074 1.8 x 1073 1.5 x 107°

a limit (fold) point on the solution curve. We take
the value of \ at the limit point found from demo
exp (K > 50) as exact. Table 2 shows the compar-
ison between numerical results in [Davidson, 1997],
our numerical results and our experiments with
CONTENT.

Example 2. 1D Brusselator problem, a well-
known model system for autocatalytic chemical re-
actions with diffusion:

d ,
—l%u"——(b%—l)u—%—uzvﬂ‘—azo,

d 2

%L"'%—bu—u'tz:O, inQ=(0,1), (15
b

u(0) = u(l) =a, v(0)=v(l)=—,
a

proposed in [Lefever & Prigogine. 1968]. This prob-
lemn exhibits a rich bifurcation scenario and has been

used in the literature as a standard model for bi-
furcation analysis, see e.g. [Schaeffer & Golubitsky,
1981; Golubitsky & Schaeffer, 1985; Dangelmayr,
1987; Chien et al., 1997, Eq. (24)] and [Mei, 1997].
A stationary bifurcation occurs [Chien et al., 1997,
Eq. (24)] at

_ di o mn
b"—1+d2a + B

2 l2 a2
d; +

— >0,
m2n? d,

Forl =d;, =1,d; =2, a =4,n =1, 2 this
gives simple bifurcations: b, = 9 + 72+ 8/m? =
19.680174, by = 9 + 4m? + 2/w? = 48.681060,
correspondingly. For the second-order central dif-
ference method with uniform mesh of 41 mesh
points (K = 80 unknowns), the corresponding ap-
proximate bifurcation points were found in [Chien
et al., 1997, Sec. 6.1]. Table 3 shows the comparison
between analytical, numerical results [Chien et al.,
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D Gelfand-Bratu equation: The limit point comparison.

(a) Results for the MQ method correspond to a uniform node distribution.

[Doedel et al.. 1997, {Davidson, 1997},

Exact K = 800 MQ(u), K =5 MQ(u), K=7 MQ(u), K =9
A 3.513831 3.5137 3.512609 3.514224 3.514047
rel. error 3.7x107° 3.5x 107 ~1.1x107¢ 6.1 x 107°
(b) Resuits for the MQ method correspond to a nonuniform node distribution.
[Kuznetsov & [Kuznetsov &
Levitin, 1995-1997], Levitin, 1995-1997],
K =50 K = 500 MQ(ou), K =5 MQ(nu), K =7 MQ(nu), K =9
A 3.51145 3.51380 3.514010 3.513809 3.513828
rel. error 6.8 x 107* 8.8 x 107° -51x107° 6.3x107° 8.5x 1077
Table 3. 1D Brusselator equation: Comparison for the bifurcation points.
(a) Results for the bifurcation point by.
[Chien et al.,
Exact 1997], K = 80 MQ(u), K =10 MQ(u), K =14 MQ(u), K = 18
by 19.680174 19.67547 19.67366 19.67786 19.67919
rel. error 2.4 x107% 3.3 x 107" 1.2x 107" 5.0 x 107°
(b) Results for the bifurcation point b2.
[Chien et al.,
Exact 1997}, K = 80 MQ(u), K =10 MQu), K = 14 MQ(u), K =18
ba 48.681060 48. 6004 48.57476 48.63168 48.65605
rel. error 1.7 x 107° 2.2 x 1073 1.0 x 107° 5.1x 107"

1997. Sec. 6.1) and our numerical results for values
of by and by at simple bifurcation points.

Example 3. Pattern formation in a 1D system
with mixed boundary conditions [Dillon et al.,
1994;.

d 9
‘|ll,~,u”+3—rcu—uv“:0,
d\ "oy 2 _ ; —
(5—.ﬁl sru—ur?—v=0, inQ=(0.1)
a (16)
du
915; = p(l — 91)(9311 - LL),
. du i
0928n = §p(1 — 62)(f3v° —v), on o0 = {0, 1}.

1. 2.3, are homotopy parame-
5.0 =10"%6 =014 3 =10,

Here 8, € [0. 1]. ¢
ters. For dy = 10

k = 0.001, (6, 82, 83) = (1,1, 0) (Neumann prob-
lem). Equation (16) was discretized by the second-
order central difference method with equidistant
mesh of 41 mesh points (K = 80 unknowns). Ta-
ble 4 [Dillon et al., 1994, Table 1] shows a com-
parison between analytic and numerical results for
values of I at simple bifurcation points.

Our numerical results (MQ(nu) method) with
K = 18 coincide with the analytic results above.

Example 4. 2D Gelfand-Bratu problem

Au+det =0, Q=(0,1)x(0,1),

(17)

ulan = 0.

This problem was studied in (Schwetlick et al.. 1996]
and [Doedel & Sharifi, to appear]. In [Schwetlick
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Table 4. A 1D pattern formation problem, comparison‘for simple bifurcation points.

([Dillon et al., 1994}, numerical]  0.047 0.080 0093 0.159 0.140 0.238 018 0317  0.232
{[Dillon et al., 1994}, analytic] 0.0465 0.0793 0.093 0.159 0.140 0.238 0.186 0.317 0.233
MQ(nu) 0.0465 0.0793 0.093 0.159 0.140 0.238 0.186 0.317 0.233
Table 5. 2D Bratu equation, resuits for the limit point.
(a) Uniform node distribution.
[Schwetlick et al., 1996],
225 < K <3025 MQ(u), K =25 MQ(u), K =49 MQ(u), K =81
A not reported 6.8359 6.8183 6.8119
rel. error 4.1x107° 1.5 x 107° 56 x 107*
(b) nonuniform node distribution.
[Doedel & Sharifi, to appear],
Exact MQ(nu), K =25 MQ(nu), K =49 MQ(nu), K = 81
A 6.808124423 6.793248 6.807978 6.808232
rel. error -21x1073 -2.2x107° -16x107°

et al, 1996] it was discretized with the second-
order central difference method with uniform mesh
and then continued using Implicit Block Elimina-
tion based on Recursive Projections. A limit point
was detected for some value of A (not reported in
the paper), and spurious limit points were detected
for K = 961, 1521, 2209, 3025 and A sufficiently
small. In [Doedel & Sharifi, to appear} the prob-
lem was discretized with a high-order orthogonal
spline collocation method with sparse Jacobian. We
reproduced the bifurcation diagram in [Schwetlick
et al., 1996). Table 5 gives the values of A at the
limit point computed by the MQ method. The ex-
act location of the limit point is assumed to be at
the value of ) obtained in {Doedel & Sharifi, to ap-
pear]| on a 16 x 16 mesh with 4 x4 collocation points.
See Sec. 6 for a discussion of the operation count.

Example 5. 2D Brusselator problem.

d
T%Au—(b+1)u+u2v+a=0,
dy

Tz—Av+bu—u2v=0, in Q=(0,1)x(0.1),

b

ulasp=a, vlsn=—.
a

18)

A stationary bifurcation occurs [Chien & Chen.
1998, Eq. (2.26)] for

d m?
bnn=1+ aia2 +d11l’2 (—ﬁ' +Tl2>

a? [2
0.
v 5 (v >

Forl=d1=1,d2=2,a=4,(m,n) =
(1, 1), (m,n) = (2, 2) this gives simple bifurca-
tions: by,1 =9+ 212 4+ 4/72, by 2 = 9+ 8m2 + 1/,
correspondingly. For the second-order central dif-
ference method with equidistant mesh of 21 mesh
points, the corresponding approximate bifurcation
points are found in [Chien & Chen, 1998, Sec. 5].
Tables 6 and 7 show comparisons between ana-
lytical, numerical results [Chien & Chen, 1998,
Eq. (2.26)] and our numerical results for values of
by,1 and by, 7 at simple bifurcation points.

A Hopf bifurcation occurs {Chien & Chen, 1998,
Eq. (2.26)] for

2
bm,n= 1—+—a2+(d1 +d2) (7—2—+Tl2> 7'('2

for some m, n, and | large enough. For [ = 10.
d = dy = 1, a = 10, (m, n) = (1, 2), this gives a
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Table 6. 2D Brusselator equation: comparison for the bifurcation points, a uniform node distribution for MQ
method.
(a) Results for the bifurcation point b1.
[Chien & Chen, 1998},
Exact K =800 MQ(u), K =50 MQ(u), K =72 MQ(u), K =98
b1 29.144494 29.104774 20.16280 29.17050 29.16062
rel. error 1.4 x 1073 -6.3x 107" -89 x107* -5.5x 107*
(b) Results for the bifurcation point b2.
[Chien & Chen, 1998),
Exact K =800 MQ({u), K =50 MQ(u), K =72 MQ(u), K =98
ba.2 88.058156 87.47325 87.61578 87.86924 88.00143
rel. error 6.6 x 107° 5.0 x 107° 2.1 x107° 6.4 x 1071
Table 7. 2D Brusselator equation: Comparison for the bifurcation points, a nonuniform node
distribution for the MQ method.
(a) Results for the bifurcation point b1, 1.
Exact MQ(nu), K = 50 MQ(nu), K =72 MQ(nu), K = 98
bi1 29.144494 29.14621 29.14726 29.14431
rel. error -5.9 x107° -9.5x 107° 6.3 x 107°
(b) Resuits for the bifurcation point bz2,2.
Exact MQ(nu), K =50 MQ(nu), K =72 MQ(nu), K =98
bz, 2 88.058156 88.15470 87.93391 88.07288
rel. error -1.1x107° 1.4 %1073 -1.7x 107!
Table 8. 2D Brusselator equation, results for the Hopf bifurcation point.
Exact MQ(u), K =50 MQ(nu), K =50 MQ(u), K =72 MQ(u), K =98
by.2 180. 15 181.8625 180.7880 181.0696 180.492
rel. error -9.5x 107* —3.5x 1073 -5.1 x107° -19x107°

Hopf bifurcation at by 2 = 101+2((1/100)+22%)7? =
180.15. see Table 8.

6. Discussion

1. We have presented the results of our exper-
iments with the continuation of solutions to 1D
and 2D nonlinear elliptic PDEs discretized by the
\Q method. We use a small number of unknowns
and achieve a high accuracy for detected bifurca-
tion points in our examples. Here are some sample
results.

(i) For the limit point in the 1D Gelfand-Bratu
equation, the MQ method with nine unknowns
gives the relative errors 6.1 x 10~% and 8.5 x
10-7 for the uniform and nonuniform node dis-
tributions, respectively. The relative error in
the third-order finite difference method with
500 nodes is 8.8 x 107°.

For the two bifurcation points in the 2D Brus-
selator problem, the MQ method with 98 un-
knowns gives the relative errors 5.5 X 1074,
6.4 x 10~ for the uniform node distribution
and 6.3 x 10=6, 1.7 x 107 for the nonuniform

(if)



490 A. I Fedoseyev et al.

node distribution. The corresponding rela-
tive errors in the second-order finite differ-
ence method with 800 nodes are 1.4 X 1073,
6.6 x 1073.

(iii) For the first eigenvalue in the eigenvalue prob-
lem for the 1D Laplace operator with nine un-
knowns gives the relative error 6 x 10° and
9 x 10~7 for the uniform and nonuniform node
distributions, respectively. This is equivalent
in accuracy to 117 and 950 node solutions, re-
spectively by the second-order finite difference
method.

9 As we noted in Introduction, the MQ method
leads to systems with full matrices. Solving a re-
lated linear system for the number of nodes M X M
in 2D with a full M? x M? matrix by Gaussian
elimination takes 2/3M°® + O(Af*) operations. By
comparison, a band solver would take O(M*) op-
erations. and a collocation method on a square
[Doedel, 1998; Doedel & Sharifi, to appear] would
take ~ 62p° M3, where p is the number of matching
points at an edge of a finite element [Doedel, 1998].
Further work is required to carefully compare the
costs of solving linear systems and the correspond-
ing eigenvalue problems arising in discretizing el-
liptic PDEs by the MQ method and by the finite
difference, finite element, and collocation methods.

3. An increase of the number of unknowns and
especially the shape parameter result in a better
accuracy but also in a larger condition number of
the operator ' mapping the nodal values of the so-
lution onto the expansion coefficients. This condi-
tion number is a limiting factor in our experiments.
In fact. to reach high accuracy for the limit point
in the 2D Gelfand-Bratu problem (e.g. the rela-
tive error 1.6 x 1073 with 81 unknowns), we had
to use quadruple precision. This is a temporary
fix. as it considerably slows down computations. In
future. we plan to implement the ideas of Kansa
et al. [1990b] to circumvent this ill-conditioning
problem.

We also found that even a simple adaptation
of the nodes adjacent to the boundary can lead to
a dramatic improvement of the accuracy in detect-
ing bifurcation points. Adaptive choice of the shape
parameter is another way to improve the accuracy
that we plan to investigate.
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Abstract

Convective transport of heat and constituent components
is dominated by buovancy driven convection in many ter-
restrial crystal growth situations. The character of natural
buoyant convection in non-uniformly heated. rigidly con-
tained inhomogeneous fluids can be drastically altered by
vibration of the container. Therefore. vibrational induced
flow can potentially be used to intluence and even control
transport in some crystal growth situations.

A parametric numerical investigation of 3D thermovibra-
tional buovancy-driven flow in differentially heated cylin-
drical containers has been conducted to investigate ther-
movibrational transport regimes in Bridgman-type sys-
tems. The objective of the work is to assess the feasibility
of the use of vibration to suppress. or control. convection
in order to achieve transport control during crystal growth.

The formulation of a model for this problem 1s outlined.
numerical method is described and its application to the
study of investigation of thermal vibrational fows is dis-
cussed. Two types of vibration are considerad: transla-
tional. and circularly polarized. The results tor flows in-
duced by g-jitter and selected results for the cases of lon-
gitudinal and lateral vibrations are presented.

*Copyright ©2000 by A. L. Fedoseyev. Published v the American
Institute of Aeronautics and Astronautics. Inc.. with perTission.

1

1 Introduction

It is generally recognized that oscillatory, or pulsative.
flow significantly alters the transfer of mass, heat and mo-
mentum in fluid systems. For certain experiments and
operating conditions. vibrations are expected to have 2
significant influence on heat and mass transfer onboard
the International Space Station (see for example. the re-
cent ESTEC Workshop proceedings [1]). Available flight
experiment data clearly show that, once initiated by
jitter”, the effects of convective flows can persist for long
times even when the g-jitter disturbance (and consequent
flow) were short-lived 121-{71.

N
g-
g

Control of convective transport continues to be an impor-
tant aspect of crystal growth research. Several groups are
actively pursuing control of convection using static and
rotating magnetic fields. However, magnetic fields cannot
be used for flow control in melts and solutions that are
poor conductors. Flow control through vibration or vibro-
convective mixing may offer an attractive alternative in
such cases.

Recent works have shown that the character of natural
buoyant convection in non-uniformly heated, rigidly con-
tained inhomogeneous fluids can be drastically altered by
vibration of the container. A review and relevant theoret-
ical and experimental research can be found in publica-
tions {1]-{13]. Thus. vibrational induced tlow can poten-
tially be used to influence and even control transport in
some crystal growth situations. A practical quantitative
understanding of vibrational convection as a control pa-
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rameter in crystal growth situations is currently not avail-
able. The objective of the work is to assess the feasibility
of the use of vibration to suppress. or control, convection
in order to achieve transport control during crystal growth.

2 Problem formulation and numeri-
cal method

Buovancy driven vibro-convective motion occurs when
oscillatory displacement of a container wall induces the
acceleration of a container wall relative to the inner fluid.
If the fluid density is nonuniform, fluid motion may ensue.
The magnitude of this motion depends on the oricntation
of the vibrational direction with respect to the local den-
sity gradients. It should be noted that even in case of a
constant density fluid subject to spatially nonuniform vi-
bration. fluid motion can also occur (for example. angular
vibration {11]).

To properly investigate influence of translational and cir-
cularly polarized vibration necessitates the use of the full
3D equations governing the transport of heat, mass and
momentum. Selected examples of our ongoing work on
this topic are outlined below.

We consider a purely thermo-vibrational convection ina
differentially heated cylindrical cavity. The fluid is taken
to be Newtonian. and the Boussinesq approximation is as-
sumed to hold. The calculations were performed for iden-
tification and characterization of thermovibrational flow
and are part of an ongoing project involving flow visual-
ization mode! experiments being conducted by Feigelson

(101

2.1 Governing equations

Translational vibration corresponds to a linear displace-
ment such as, for example. u = dcoswr, where d is a
real vector giving the displacement magnitude and @ is
the frequency. In this case the ampoule is displaced back
and forth upon the same line. Polarized vibrations are
characterized by a displacement u = Re{d¢'**}. where
d = d, — id>. Herc the instantaneous vibration direction
rotates in the polarization plane defined by the real vec-
tors d; and d2. A sketch showing both translational and
circular polarized vibrations is presented in Fig.1. Ina ref-
erence frame fixed to a vibrating ampoule. these types of
vibrations result in the following torm of the momentum
equalion:

%Y_ +(VV)V=-Vp+ PrVIV + RarPr- (@ + oC)ne+

RazPr-(©+ aC)f(Q,1) (H
while the continuity equation:
V.-v=0 (2)
" energy equation:
00 3
Ty +(VV)o=V-0 3)
and species transport equation:
%g +(VV)C = PrSc™'V°C )

2

where length, time and velocity are scaled, respectively,
by Ro, R3/x and x/Ro. Here Ry is the ampoule radius and
x is the thermal diffusivity. The nondimensional concen-
tration and temperature, are given by @ and C, respec-
tively. The function f(Q,) is the acceleration of the vi-
brating ampoule and Q = wR3/x is a dimensionless fre-
quency; 1o = (sin¢,0,cos¢). The Prandtl, Schmidt. ther-
mal and solutal Rayleigh and vibrational Rayleigh num-
bers and the buoyancy ratio are, respectively, given by

, JR3
Pr=1,Sc=%,Rar = ALY Rag = aRar ,
o= Beca/(BAT). Ray = 22318

Here { and P, are the thermal and solutal expansion co-
efficients and AT, Cw, g, ®, d, &, v, D are the character-
istic longitudinal temperature difference, reference con-
centration in the melt, gravitational acceleration, vibra-
tional displacement amplitude and frequency, direction of
gravity, kinematic viscosity and solute diffusivity, respec-
tively. The dimensionless number Ray is the vibrational
Rayleigh number and Ra; = aRa¥-.

The boundary conditions for eq. (1)-(3) are: (1) the non-
slip condition for the velocity, V = 0, on the walls, and
(ii) the given wall temperature distribution, ®=0,. An
undefined constant in the pressure field is excluded by set-
ting p(xo,Y0,20) = 0 at some location (x0,Y0,20)-

Equations (1) are solved together with the equations gov-
erning heat and specics transfer (3).(4) and the condition
that the velocity is divergence free (2).
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2.2 Finite element solution method

The equations arc solved in primitive variable form
(velocity-pressure. temperature. concentration. €1¢.) us-
ing a Finite Element Method.

Finite element method with regularization for the
Navier-Stokes equations

This method (RNS) was proposed in [15]. (16] for high
Re number flows. It was shown that such a regularization
works also well in case of flows with thin boundary lay-
ers. even with few mesh nodes placed inside the boundary
laver [17]. (18], For the considered problems. the conti-
nuity equation (2) is modified as follows
V-V=1V-(Vp-F) (5
where T is a small regularization parameter. and F is a
hody force in eq. (1) for the thermo-vibrational convec-
tion. For T — 0 we approach the original equation (2). A
boundary condition for the pressure on the wall is

(Vp—F)-n=0, (6)
where n is a unit wall normal vector. Eq. (5) and (6)
present the main feature of this method. and ensure the
balance of the component of the force normal to the region
boundary.

Another advantage is that this approach allows to use the
same order finite element approximation for the veloc-
itv. pressure. temperature and concentration with all un-
knowns located at the same nodal points. For a justifica-
tion of this regularization one can be reterenced to the new
hydrodynamic equations proposed in [19] that have simi-
lar fuctuation terms. Lohner has also shown that similar
terms actually appear in the discrete equations as a result
of different order finite element approximations used for
interpolation of velocity and pressure [20].

The continuity equation (3) and momentum equations (1)
are solved simultancously at cach time step. This elimi-
nates many problems related to boundary conditions and
places only slight limitations on the time step size for tran-
sient problems (due to the physical nature of the problem).

3D CFD software

We implemented the above 3D model of vibro-convective
buovancy-driven flow in differentially in the FEMINA/3D

code [14]. The regularization proposed makes a solution
procedure very efficient.

A high accuracy solution iterative CGS-like method using
preconditioning by high order incomplete decomposition
has been implemented. This allowed us to obtain high-
precision solutions with accuracy up to 10~°. The prccon-
ditioning also reduced the computation time by one to two
orders of magnitude and the memory size by a factor of §

. for 3D flows compared to currently available commercial

3

codes (e.g. CFD2000) [24]. This approach makes it possi-
ble to solve large time-dependent problems (up to 300.000
unknowns) with reasonable computation times. A typical
solution time for a transient problem is few hours on a SGI
02 workstation.

2.3 Benchmarks

This code was carefully tested on benchmarked exper-
imental. theoretical and numerical data for a variety
of 2D/3D viscous and thermo-convective flow problems
[18], [16], [17]. Here we present some selected examples:

Three dimensional thermal convection in a cylinder

The method bees applied to the problem of convective 3D
flow in differentially heated horizontal cylinder. The ex-
perimental data by Bogatirev et al [21] have been used
for comparison. These data have been obtained during
ground tests for the device, the thermal convection sen-
sor, before it was flown on Mir station. Numerical re-
sults from the 3D finite volume simulations by Bessonov
[22] have been also used for comparison. The temperature
distribution on a cylinder wall was (i) linear temperature
profile, and (ii) computed using a real, finite wall con-
ductivity (adjoint problem). The body force ineq. (1)
is F = (0,0,RarPr®), no vibration was applied. The
Rayleigh numbers is in the range from 10% to 1.2-10°.
The value of t* used was 1077 to 10~*, and it did not
change noticeably the resuits. Results are shownin Fig. 2.
An agreement with the experimental data for Rar > 4107
is quite good in the case (ii). when a real finite wall con-
ductivity has been taken into account.

Two dimensional and three dimensional lid-driven
cavity problem

We compare our results with experimental data obtained
by Koseff and Street {23] for isothermal flow at Re =
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3200 and 10*. We solved equations (1) and (3) numeri-
cally for the unknowns (V, p) in the 2D region (x,2)
[0,1]{0,1). The 3D version of the problem corresponds
to the Koseff & Street experiment (23] with the domain
(x,v,2) = [0,1)[0,3][0,1]. The boundary conditions are:
V = (u,v,w) = (1,0,0) at the driven lid (z=1): V= 0 on
the other walls, and. (Vp - n) =0 on all the walls. The
undefined constant in the pressure field is eliminated by
setting pressure p = 0 at (x,v,2) = (0,0,0).

Fig. 3 and 4 present the experimental measurements and
numerical results for 1 and s velocity components ob-
tained by our method, RNS. by solving the original NS
equations (1), (2), and by using a 2D k—¢ model with
commercial code {24]. The experimental data are shown
for the symmetry plane (x,z) at y=1.5 along the lines x
=0.5 and z =0.5 of the 3D cavity, that has relative dimen-
sions (x:v:z) = 1:3:1. The experimental points correspond
to time averaged values of the measured velocities [23].

The results obtained with our model, eq. (1), (5) and
(6) are in good agreement with the experimental data for
Re=3200 and 10.000 and are an improvement upon previ-
ous results obtained by solving the NS equations (1), (2).

Magnetic field suppression of convective flow

Numerical solution for thermal convection flows in a
semiconductor melt with strong static magnetic field ap-
plied is presented in Fig 5. Although the generated flows
have extremely low velocity because of the large Hart-
mann numbers (Ha = 20 to 2000). the numerical solu-
tion of the governing equations involved is very compli-
cated due to the thin boundary layers. Different numerical
methods have been tested for the solution of this problem
[17]. The best results have been obtained with the pre-
sented RNS approach. It can provide the numerical solu-
tions in a wide range of Ha numbers (up to 10%), while
other methods failed for Ha > 20. The RNS results com-
pare favorably with the asymptotic theoretical solutions,
Fig. 3c.

3 Thermal vibrational convection.
Results and discussion

A parametric study of translational and circular polarized
vibrations under typical microgravity and terrestrial con-
ditions for typical semiconductor melts was performed. A
snapshot of a typical flow pattern for translational vibra-
tion is presented in Fig. 6. Even in the total absence of

gravity the vibrations have resulted in detectable flows.
For the cases examined, the temperature distribution re-
mains almost unperturbed (due to the low Pr and weak
flow strength).

The angle between the direction of vibration and the am-
poule has been studied for translational vibrations in the
presence of an axial temperature gradient. At high fre-
quencies and when the angle is zero, no influence of the
vibration on the flow was observed, even when vibrational

“the i{aleigh number is very high. The maximum observed

4

effect corresponds to an angle of 90 degrees. Herc trans-
port is significantly enhanced.

The influence of vibrations on heat and mass transfer be-
comes significant for oxide melts due to their low thermal
diffusivity (Pr ~ 10). These flow patterns are shown in
Fig. 7 for the case of circular polarized vibration. Initially
(at time ¢ = 0), the species concentration was ¢ = 1 at the
lower quarter of the cylinder and ¢ = 0 elsewhere. The
evolution of the species concentration (process of mixing)
is shown in Fig. 8 together with minimum and maximum
values of velocity (for the whole domain) components.
Complete mixing occurs in about ten seconds. The heat
transfer (local Nusselt number at the top and the bottom)
is also enhanced by about an order of magnitude. If the
frequency of vibration is high, of the order of 100 Hz (for
fixed Ra), then the changes in heat and mass transfer due
to vibrations become less significant. This corresponds to
earlier experimental observations [71,[8].

Our results show that both translational and circular po-
larized vibrations can cause average melt flow for a range
of parameters typical of practical semiconductor growth.
For a given vibration amplitude and frequency, circular
polarized vibrations result in more intensive melt flows
than translational ones.

The influence of forced vibration on g-jitter induced flows
using typical SAMS micro acceleration data from the
USML-2 mission was also investigated. Motivated by the
predictions of the averaged equation theory presented in
Ref. {11], translational vibration was applied parallel to
the ampoule axis (and thus, the temperature gradient) in
an attempt to damp unwanted irregular time-dependent
flow caused by g-jitter Fig. 9a). While the flow varia-
tion with time becomes more regular, we did not succeed
in completely suppressing the g-jitter flow (Fig.9b.c).

We found that the use of the same amplitude vibration
in the direction orthogonal to the ampoule axis is more
effective. This induces intensive thermal vibrational flows
and flow disturbances due to g-jitter become practically
insignificant (Fig. 9d).
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Conclusions

The influence of translational and circularly polanized vi-
bration in analysis in a model Bridgman melt growth con-
figuration was investigated. The nature of the flows pro-
duced by the types of vibration under consideration ne-
cessitated the use of the full 3D equations governing the
transport of heat, mass and momentum. The governing
equations were solved numerically. Flow patterns for
translational and circular polarized vibrations and g-jitter
microaccelerations were analyzed. For translational vi-
bration. thermovibrational flow is strongly dependent on
the angle between the vibration direction and the tempera-
ture gradient. Circular polarized and rotational vibrations
result in more intensive melt flows than translational ones.
The simultaneous action of g-jitter and translational vibra-
tions is currently being study from the viewpoint of using
applied vibration as a means of flow control.
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Figure 1: Translational vibration (a). dy or d> = 0. and
polarized vibration (b), dy,d> = 0; ¢ is the angle between
gravity vector and axis of ampoule, is the angle between
direction of vibrations and axis of ampoule
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Figure 3: Driven cavity problem, Re = 3200. Comparison
of horizontal velocity profiles (1-4) for numerical (solid
and dashed lines) and experimental (squares) results and
vertical velocity profiles (5-8) for numerical (solid and
dashed lines) and experimental (triangles) results : 1-NS,
7 - k —¢ model, 3-RNS (2D), 4-RNS (3D); 5-RNS 3Dy,
6-RNS (2D), 7 - k — € model, 8-NS.

&
~

06 T T T T
Re=10000 -
04f;: -
: S B
: 2 t
02 /*\ ".
3 a2 yj
3 3 ’
E oF - "
g b 4
g B :

04ty

0.8 L i " "
0.4 0.6
COOQRDINATE (Z or X)

Figure 4: Driven cavity problem, Re = 10,000. Com-
parison of horizontal velocity profiles (1-3) for numerical
(dashed lines) and experimental (squares) results and ver-
tical velocity profiles (4-6) for numerical (dashed lines)
and experimental (triangles) results: I-NS. 2 - k—¢
model, 3-RNS (2D). 4-RNS (2D),5 -k —€ model, 6-NS
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Figure 3: Thermal convection suppression by magnetic
field. D=2 H =1, Ra=125-10°, Ha=2170 (B =
5.0Tesla): stream function (a), vertical velocity profile
Vy(x) at y = 0.25 (b), Summary of magnetic field sup-
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Figure 6: Typical instantaneous 3D melt flow patterns for
wranslational vibration at Og, Ra = 0, Ra, = 7.25-10%,
Pr=0.01, ® = 100Hz, lateral vibration: velocity compo-
nents Vx,Vy,Vz, pressure P, temperature T, temperature
disturbance AT, and velocity module. White color desig-
nate the maximal value plotted, black one - the minimal

value. Vibrations are applied along x-directions (horizon-
tal)

Figure 7: Instantaneous 3D flow patterns for circular po-
larized vibration, Ra =7.25- 103, Ra, =7.4- 108, Pr=15.
o = 10Hz : velocity components Vx,Vz, temperature T.
concentration C, velocity module, and temperature distur-
bance DT. White color designate the maximal value plot-
ted. black one - the minimal value.
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Abstract

A numerical solution for thermal convection flows in a
semiconductor melt with strong static magnetic field ap-
plied is presented. Although, the generated flows have ex-
tremely low velocity, the numerical solution of the govern-
ing equations involved is very complicated due to the thin
boundary lavers. Rectangulat cavity with different aspect
ratios and gravity direction aligned and misaligned with
the magnetic field vector are considered. Three numerical
methods are compared. It is shown that the finite element
approach with regularization can provide the numerical so-
lutions in a wide range of Ha numbers (up to 10Y). The
results compare favorably with the asymptotic theoretical
solutions.

1 Introduction

The application of magnetic fields is one of the most
promising approaches for the reduction of convection
during directional solidification of electrical conductive

*Copyright ©2000 by A. 1. Fedoseyev. Published by the American
Institute of Aeronautics and Astronautics. Inc.. with permission.

1

melts (semiconductor crystals). Current technology allows
the experiments with very strong static fields (up to 80
KGauss) for which, based on the simple scaling analysis
in stabilized systems (vertical Bridgman method with ax-
ial magnetic field), nearly convection free segregation is
expected, {1].

However, the reported experimental studies have yielded
controversial results [2,3]. The computational methods are,
therefore, a fundamental tool in the understanding of the
phenomena accounting during the solidification of semi-
conductor materials. Moreover, effects like the bending
of the isomagnetic lines, different aspect ratios and mis-
alignments between the direction of the gravity and mag-
netic field vectors can not be easily analyzed with analyti-
cal methods.

The reported numerical results are not able to explain the
experimental data[4,5}. Although the generated flows are
extremely low, the computational task is complicated be-
cause of the thin boundary layers [6].

Here, three different numerical approaches we have used
for comparison, :

(1) The spectral method implemented in [7],

(2) The finite element method with regularization for
boundary layers (8],
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(3) The multiquadric method, a novel method with global
radial basis functions [9].

The results obtained by these three methods are presented
for a wide range of Hartmann numbers corresponding to
magnetic fields B from 0.05 to 5.0 Tesla (0.5 to 50.0
KGauss). Comparison and discussion of accuracy, effi-
ciency, reliability and agreement with the asymptotic so-
lution are presented.

2 Governing equations

The two dimensional steady state thermal convection of in-
compressible viscous fluid (melt) in a rectangular ampoule
of diameter D and hight H was considered. More general
cases are discussed in [17], [18], [19]

The governing equations (Boussinesq approximation) are :

The momentum equation:

(VV)V - PrV?V +Vp=RaPr-©-e,+F (N
while the continuity equation:
V-¥=0 (2)
and energy equation:
(VV)0 = V30. 3

where length, time and velocity are scaled, respectively, by
L.L*/x and /L . Here L is the smallest of the ampoule
diameter D and hight A. and x = X is the thermal diffu-
sivity of the melt. F is a body force due to magnetic field
(Lorentz force). For an axially symmetric configuration
the Lorentz force is given by

F = PrHa*[(V x ep) x eg] = (PrHa*V1,0) (4
in the two-dimensional case, where V) is the horizontal
component of the velocity. It does not depend on elec-
trical potential. because the electrical potential is uniform
(Vo = 0), when a vertical magnetic field is applied ( see,
for example. [1]). This is not valid if the symmetry is
broken. when the magnetic field direction and the grav-
ity vector are slightly misaligned. However, to simplify
the study. we neglect this effect. According to (1], Joule
heating due to clectromagnetic field can be neglected as
well. The nondimensional temperature © is scaled by

@ = (T = Teowp)/AT,= GL, G is a vertical temperature
gradient % The Prandtl, Rayleigh and Hartmann num-

bers are, respectively, given by

v AT gl?
V pa=PATEL 1By /S
K VK vp

Here B,g,V,p, 0 are thermal expansion coefficient, gravita-
tional acceleration, kinematic viscosity, density and elec-

Pr

" trical conductivity, and Bp is the magnetic field intensity,

2

eg, ep area unit vectors in the direction of gravitational ac-
celeration and magnetic field.

The boundary conditions for eq. (1)-(3) are: (i) the non-
slip condition for the velocity, V =0, on the walls, and
(i) the given wall temperature distribution, © =y on side
walls, and O = —Op(x — L)?* at the bottom. The latter
condition represents a parabolic temperature distribution at
the bottom boundary. To exclude an undefined constant in
the pressure field we set p(xo,y0) =0 at arbitrary location
(x()ay())-

3 Problem parameters

The problem was solved using properties for Germanium
(Ge) melt exposed to magnetic field having intensity B in
a range from O to 5 Tesla (and in few cases up to 50 Tesla);
the direction of magnetic field vector is axial, e = (0,1).
The corresponding Hartmann number varies from Ha =0
to 2170 (and in few cases to Ha = 2.17- 10%). Ampoule
geometries considered are (a) L = lem , H = 2cm, and (b)
L=2cm H=1lcm.

Solutions were obtained for the temperature gradient on a
side wall G = 70K /cm. The average temperature gradient
on the bottom (solid/liquid interface) was 0.5K Jem. The
corresponding Rayleigh number is Ra = 1.24- 10°. Earth
gravity g was considered to be (1) aligned to the magnetic
field direction, g = go(0, — 1) and (i) misaligned by 0.5 de-
grees.

4 Numerical methods

Three numerical methods were used to solve the system of

eq. (1) - (3) for the boundary conditions and parameters
given above.
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4.1 Spectral element method

By using the spectral element method (SEM) code NEK-
TON [7], the domain was divided into quadrilateral ele-
ments, refined near the walls (Fig. la), and 8 x 8 Cheby-
shev polynomials are used inside each element for field
variables approximation. Total number of elements in our
tests was 362, and total number of unknowns was about
5.10%.

4.2 Finite element method with regulariza-
tion for the Navier-Stokes equations

The finite element method with regularization for the
Navier-Stokes equations (FEMR) was proposed in (8] for
high Re number flows. It was shown that such a regular-
ization works well in case of flows with thin boundary lay-
ers, even with few mesh nodes placed inside the boundary
layer. For the present problem, the continuity equation (2)
is modified as follows

V.V=1V.(Vp—F—RaPr-9-¢;) &)

where T is a small regularization parameter. For T — 0 we
approach the original equation (2). A boundary condition
for the pressure on the wall is

(Vp—F—RaPr-©-¢) -n=0, (6)
where n is a unit wall normal vector. Eq. (5) and (6)
present the main feature of this method, and ensure the
balance of the component of the force normal to the region
boundary.

Another advantage is that this approach allows to use the
same order finite element approximation for the velocity
and pressure with all unknowns located at the same nodal
points. For a justification of this regularization one can be
referenced to the new hydrodynamic equations proposed
in [10] that have similar fluctuation term. Similar terms
have been obtained as a result of the consistent treatment of
time-advancement for the divergence-equation by Lohner
(see [11]). Lohner has also shown that similar terms actu-
ally appear in the discrete equations as a result of different
order finite element approximations used for interpolation
of velocity and pressure.

The numerical solution is insensitive to the value of T.
The value of T should be chosen within the range 1078 10
10~*. For a smaller value of 1 the discrete equations be-
come nearly incompatible, and numerical solution exhibits
strong spatial oscillations.

3

The simplest linear finite elements were used for numerical
approximation of velocity, pressure and temperature. We
used triangular meshes with 40 x 100 and 80 x 100 nodes
refined near the walls (Fig. 1b). The results obtained on
these meshes are very close, so we used 40 x 100 mesh for
most of the runs. Total number of nodes and unknowns
is respectively 4000 and 16- 103. FEMINA/3D CFD code
(Finite Element Method IN Applications) (12] was mod-
ified to implement proposed regularization method. Dis-

~ crete finite element equations corresponding to (1), (5), (3)

were solved together simultaneously by CNSPACK solver
[12] using the CGS-type iterative technique and high order
preconditioning by incomplete decomposition.

4.3 Multiquadric
method

radial basis function

The Multiquadric Radial Basis Function (MQ) Method is a
novel meshless collocation method with global basis func-
tions. The concept of solving partial differential equations
(PDE) using radial basis functions (RBFs) was introduced
by Kansa in 1990 [9]. He implemented this approach for
the solution of hyperbolic, parabolic, and elliptic PDEs us-
ing the MQ RBFs proposed by Hardy [13],[14] for inter-
polation of scattered data.

An RBEF is a function that depends only upon the dis-
tance between a point (x,y) and a reference node (xjy¥5)-
Among studied RBFs still only the MQ RBFs are proven
to have an exponential convergence for the function in-
terpolation [16]. A MQ RBF is given by g;j(x,y) =
\/Ec —x) 2+ -y + c? , where c; is called the shape
parameter. The numerical experiments for parabolic and
elliptic PDEs by Kansa [9] show high accuracy and effi-
ciency of the MQ scheme. A brief review on MQ RBF for
the solution of PDE can be found in [15] and on the RBF-
PDE Web site [22]. This approach results in modest size
systems of nonlinear algebraic equations which can be ef-
ficiently solved by using widely available library routines
and linear solvers for dense matrices.

For a given set of N nodes in the domain and at the bound-
ary, the solution for unknown V, p or © is approximated
as a sum of MQ functions with the coefficients as un-
known. These coefficients are found by collocating gov-
erning equations at the internal nodes and boundary condi-
tions at the boundary nodes. Nonlinear algebraic system is
solved by Newton method.

We used up to 25 x 25 uniformly distributed nodes and
constant shape parameter ¢; = cg = const for all functions
_Total number of unknowns is 2500.
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5 Results and discussion

5.1 Convection in rectangular cavity with
H/D=2

The tests betow represent the case of melt zone with aspect
ratio H/D = 2.

5.1.1 Flow without magnetic field

The nondimensional parameters are: Pr = 0.006, Ra =
1.25-10%, Ha=0D =1,H = 2 and L = D. The temper-
ature distribution at the bottom is given by @g = —3.575-
10~3(1 — 4x*). The results for the case a = 0 (« is the
angle between the gravity vector and the vertical axis) are
shown in Fig. 2. The solution obtained by all three meth-
ods are close to each other.

The flow pattern consists of two counter-rotating symmet-
ric cells, located at lower corners. The perturbation of the
temperature distribution resulting from © = y, set on the
wall. can not be observed on the plot. Note that the tem-
perature field is suppressing the flow, which is caused by
the horizontal temperature gradient at the bottom.

If the gravity direction is misaligned with the ampoule axis
by 0.5deg, flow pattern becomes quite different. A nor-
mal to the gravity component of the temperature gradient
becomes a main reason for the thermal convection. A sin-
gle roll is formed, while the magnitude of melt velocity is
higher by a factor of two to three.

5.1.2 Flows under magnetic field

B = 0.05 Tesla. Ha=21.7. The MQ method did not yeld
a solution, because the Newton method did not converge
(since the Jacobian becomes ill-conditioned).

The solution by the SEM and FEMR methods show no-
table difference. The SEM solution for the velocity field
exhibit numerical oscillations between the mesh nodes.
The flow pattern from FEMR is the same as in the ab-
sence of magnetic field (Fig. 3). Vertical velocity profile
at v = 0.25 shows a boundary layer. The flow velocity is
decreased by about a factor of two.

B = 0.5 Tesla, Ha=217. The boundary layer becomes very
thin. and the flow velocity is about two order of magnitude
lower compared to B = 0. The velocity profiles from the
SEM computation exhibit spatial oscillation with velocity
sign change between mesh nodes. The FEMR can provide

4

the results still without difficulty, the velocity profiles re-
main smooth.

B = 5.0 Tesla, Ha=2170. The results from the SEM com-
putation showed strong numerical instability. The FEMR
solution is still quite reasonable: the flow pattern is about
the same, but flow velocity is about two order of magnitude
lower than in previous case B = 0.5 Tesla. The boundary
layers become extremely thin (0.01¢m), and therefore al-
most invisible on a plot (Fig.4).

In case of a misalignment of gravitational acceleration with
ampoule axis, the flow pattern changes to one big cell for
this and all other values of magnetic field considered.

B = 50 Tesla, Ha=21700. This was done just to test the
ability of proposed FEMR method, the solution still re-
mains smooth with even three times more thin boundary
layer compared to B = 5.0 Tesla.

Stretching of the stream lines by the magnetic field demon-
strated in Fig. 5 for all the cases above (aligned gravity
vector) plus additional case B = 0.005 Tesla, Ha=2.17.
This effect is mentioned in many papers schematically, but
computational results were never shown.

5.1.3 Discussion

Figure 6 shows the maximum radial velocity calculated.
using the FEMR method, for different values of the im-
posed magnetic field B. The maximum of horizontal (ra-
dial) velocity versus B is presented by few curves, marked
as “Vr(b)” for FEMR on 40x100 uniform in vertical di-
rection mesh, by “Vr(f)" for 40x100 refined near all walls
mesh and by “Vr(d)” for 80x100 mesh refined at the walls.
Results for misaligned case are presented by the curve.
labeled as “Vr(a = 0.5)". We can observe a predicted
asymptotic dependence Vimar ~ Ha™? for all the cases,
starting from about B = 0.05 Tesla (Ha = 20), in accor-
dance to asymptotic given in [1].

The main difficulty of this problem is a viscous flow with
thin boundary layer. Despite the fact that actual flow ve-
locities are very low and the Reynolds number obtained
using the computed velocities, is Re~10"110107%, abig
value of the Hartmann number results in a relatively small
coefficient at the highest derivative of the velocity in the
momentum equation. Solution of such a problem exhibits
thin boundary layer with the thickness & ~ Ha~!, and the
the “equivalent” Reynolds number Re.qv ~ Ha?, for B=0.5
Tesla Reeqy = 4.7 10* and B=50.0 Tesla Re.qy = 4.7 108.
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5.2 Thermal convection in cavity with aspect
ratio H/D=0.5

The following tests present the case with aspect ratio
H/D=0.5,D=2,H = 1. The temperaturc distribution at
the bottom is given by @5 = —7.150- 1073(1 — %) . Applied
axial temperature gradient is also G = 70 K/em.

Flow without magnetic field

The solution obtained by all three methods are also close
to each other. The flow pattern consists of two counter-

rotating symmetric cells, that occupy most of the volume,
Fig. 7.

In the case of the gravity misalignment with the ampoule
axis direction by 0.5deg, the axial temperature gradient
becomes a main driving force for the thermal convection.
This results in the change of flow pattern that becomes con-
sisting of one big convective cell.

Flow with magnetic field

The results are shown in Fig. 8. Again when Ha number
is high. all the methods except FEMR, exhibit the same
difficulties as in a case of aspect ratio H/D = 2. A sum-
mary of the results is shown in Fig. 9. The suppression of
the flow is essentially same efficient as before with similar
asymptotic dependences Vpur ~ Ha™*. The velocity pro-
file in the boundary layer obtained by FEMR is shown in
Fig. 10. One of the advantages of FEMR is that its so-
lution remains smooth even at the big change of the slope.
We can see that the thickness of the vertical boundary layer
is in agreement with asymptotic solution, 8~ Ha™'. The
tangent velocity derivative at the boundary decreases with
Ha number as %{- ~ Yawx ~ Ha™'.

Comparing between Fig. 6 and 9 it is found that misalign-
ment's impact on the reducing of the convection is more
important for aspect ratio 1.

Conclusions

We compared three different numerical methods for the so-
lution of thermal convection flows in a semiconductor melt
with strong static magnetic field applied. These are spec-
tral element method, finite clement method with regular-
ization for the Navier-Stokes equations and multiquadric
method. a method with global basis functions. Although

the generated flows are extremely low, the computational
task is very complicated because of the thin boundary layer
at high Hartmann numbers, Ha >> 1. We considered melt
region geometry with different aspect ratios, and gravity
direction aligned and misaligned with the magnetic field
vector. The comparison shows that the finite element ap-
proach with regularization can obtain stable and reliable
solutions in a wide range of Ha number, up to 10*. These
results compare favorably with asymptotic solutions.

. The main difficulty of this problem is that a flow has a very

5

thin boundary layer. Despite the fact that actual Reynolds
number is very low, Re ~ 10~! to 107% , a high value of
the Hartmann number results in a relatively small coef-
ficient at the velocity Laplacian in the momentum equa-
tion. Solution of such problem exhibit thin boundary lay-
ers with related, like for high Reynolds number flows, dif-
ficulties. That is one of the reasons for the discrepancy in
the results that numerical studies reported. Both the spec-
tral method and the multiquadric method with global basis
functions needs improvement to deal with thin boundary
layers. Multilevel approximation by Fasshauer [201,[21]
can be one of the ways.

Numerical solution of these problems by available com-
mercial CFD codes may be not efficient or not possible.
Adaptive algorithms can be a promising solution. Devel-
opment of more accurate and efficient solution methods for
this problem is necessary.
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(a) (b)

Figure 1: Mesh used in the spectral element method (a), 362 elements, 8 x 8 Chebyshev polynomials approximation

inside each element. and mesh used in the finite element method (b), 4000 nodes, 8,000 triangle elements.
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Figure 2: Thermal convection without magnetic field for geometry 1, D = 1, H=2, Ra=1.25-10% temperature

distribution (a), stream function (b), and vertical velocity profile Vy(x) aty = 0.25 by SEM and FEMR methods (c).
velocity scale is 0.225 cm/s.
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Figure 3: /D =2, Ra = 1.25x10%, Ha = 21.7 (B=0.05 Tesla). Stream functions for gravity vector (a) aligned and (b)
0.5 degrees misaligned relative to the vertical direction. (c) Nondimensional vertical velocity profile Vy(x)/(0.225 cm/s)
calculated using the FEMR method 0.25 H from the bottom of the cavity (y/H =0.25)
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5.0Tesla): stream function (a), and vertical velocity profile Vy(x)aty =

0.5 degree gravity directionat y = 0.5(c).
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Figure 6: A summary of magnetic field suppresion of the flow for H =2, D = 1. Maximum value of horizontal (radial)
velocity versus B: Vr(b) on 40x100 uniform in vertical direction mesh, Vr(f) for 40x100 refined near walls mesh, and
Vr(d), 80x100 mesh refined at the walls. Predicted asymptotic dependence Vimax ~ Ha~? is observed for all the cases
including the misaligned one, starting from about B =0.25 Tesla.
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Figure 7: Thermal convection without magnetic field for D=2, H =1, Ra = 1.25-10%: stream function (a), stream

function for misaligned configuration (b), vertical velocity profils by SEM and FEMR, Vy(x) for (a) aty = 0.25 (¢), and
for (b) at v = 0.5 (d), velocity scale is 0.225 cmi/s.
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Figure 8: Thermal convection with magnetic field. D=2, H=1,Ra= 1.25-10%, Ha = 2170(B = 5.0Tesla): stream
function (a), same for misaligned case (b), vertical velocity profile Vy(x) for (a) aty = 0.25 (c) and vertical velocity
profile Vy(x) for (b) aty = 0.5 (d), velocity scale is 0.225 cm/s.
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velocity versus B for aligned and misaligned configurations. Predicted asymptotic dependence Vimaux ~ Ha™?is observed
for both cases.
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Figure 10: The velocity profile in the boundary layer (X coordinate from -1.0 to -0.95 ) with increasing the magnetic
field for geometry 2, D =2,H =1,Ra=1.25- 10° : (a) to (d) correspond, respectively to B =0, 0.5, 5.0 and 50.0 Tesla.
The velocity amplitude decreases as A a~? and its gradient on the wall decreases as Ha~! with increasing the Hartmann
number Ha.
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Abstract

The Multiquadric Radial Basis Function (MQ) Method is a recent meshless collocation method with
global basis functions. It was introduced for discretizing partial differential equations (PDEs) by Kansa
in early nineties. The MQ method was originally used for interpolation of scattered data, and it was
shown to have exponential convergence for interpolation problems. ’

In [11] we have extended the Kansa-MQ method to numerical solution and detection of bifurcations
in 1D and 2D parametrized nonlinear elliptic PDEs. We have found there that the modest size nonlinear
systems resulting from the MQ discretization can be efficiently continued by a standard continuation

software, such as AuTO. We have observed high accuracy with small number of unknowns, as compared
with most known results from the literature.

In this paper we formulate an improved Kansa-MQ method with PDE collocation on the boundary
(MQ PDECB): we add an additional set of nodes (which can lie inside or outside of the domain) adja-
cent to the boundary and, correspondingly, add an additional set of collocation equations obtained via
collocation of the PDE on the boundary. Numerical results are given that show a considerable improve-
ment in accuracy of the MQ PDECB method over the Kansa-MQ method, with both methods having
exponential convergence with essentially the same rates.

Keywords: Radial basis functions, multiquadric method, numerical solution, continuation, bifurca-
tions, nonlinear elliptic PDEs.

1 Introduction.

The Multiquadric Radial Basis Function (MQ RBF or, simply, MQ) method is a recent meshless collocation
method. with global basis functions, for discretizing PDEs. It was originally proposed in 1970 [19], [20] for
interpolation of scattered data and was shown [27], (28], [31] to have an exponential convergence for function
approximation. The MQ method was introduced for solving PDEs in Kansa [24], [25] in early nineties. Since
then it was successfully applied for solving a number of 2D and 3D PDEs, see e.g. [4], (18], [29], 17}, [21], (7]
and references there, while some convergence results for solving PDEs, based directly on the interpolation
error estimates, appeared only recently 14, 15]. Application of the MQ method to PDEs leads to finite
dimensional problems with full matrices. The Kansa-MQ method was shown to give high accuracy with a
relatively small number of unknowns (tens or hundreds for 2D problems). The corresponding linear systems
can be efficiently solved by direct methods. In {11] we have extended the Kansa-MQ method to numerical
solution of parametrized nonlinear elliptic PDEs. We presented there results of our numerical experiments
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with continuation of solutions to and detection of bifurcations in 1D and 2D nonlinear elliptic PDEs. We
found that the modest size nonlinear systems resulting from the MQ discretization can be efficiently continued
by a standard continuation software, such as AUTO [5).

Our observations have shown that the residual error is typically largest near the boundary (by one to
two orders) compared to the residual error in the domain far from the boundary.

In this paper we formulate an improved Kansa-MQ method with PDE collocation on the boundary
(PDECB): we add an additional set of nodes (which can lie inside or outside of the domain) adjacent
to the boundary and, correspondingly, add an additional set of collocation equations obtained via collocation
of the PDE on the boundary. The motivation for this modification of the Kansa-MQ method comes from
our observations that 1) the residual is typically the largest near the boundary (by one to two orders larger
than in the domain far away from the boundary), and 2) the residual is dramatically reduced when we use
the PDE collocation on the boundary. The MQ PDECB method leads not only to a higher accuracy, but,
for nonlinear problems, also to a higher efficiency due io the reduction of the number of unknowns in the
continuation process by using a preprocessing.

We apply our MQ PDECB method to several model 1D and 2D linear and nonlinear elliptic PDEs
and present results of our numerical experiments. These results demonstrate considerable improvement in
convergence of the MQ PDECB method over the Kansa-MQ method, with both methods having exponen-
tial convergence with essentially the same rates. To our knowledge, this is the first demonstration of the
exponential convergence for the MQ method applied to PDEs.

A related idea was successfully used for high Re number fluid flows in the cases of the RNS model (8],
[12] and Alexeev hydrodynamics equations [10] (in the framework of the finite element method), that was
applied for the solution of 3D thermo-vibrational flows [9].

A class of global numerical methods for 1D and 2D problems, the numerical algorithms without saturation,
was proposed by Babenko in early eighties [1]. These include a highly accurate discretization method for
PDEs based on Chebyshev polynomials. This method was further developed by Belykh (see e.g. [2],(3]),
who found it to be more accurate and better conditioned than the spectral method.

In Section 2 we formulate the Kansa-MQ and the MQ PDECB methods for a linear elliptic PDE. In
Section 3 we describe in detail the Kansa-MQ and the MQ PDECB methods for continuation of solutions
to parametrized nonlinear elliptic PDEs. For clarity of presentation, Section 3 is written independently of
Section 2. In Section 4 numerical examples are given that illustrate the accuracy of our method. In Section
5 we summarize our results.

2 A linear elliptic PDE.

TWe consider a well-posed elliptic boundary value problem: for given g(z), f(z) find u(z) from

Lu(z) = f(z), inQC RY, (1)
Bu(z)|yq = 9(2),

where (0 is a bounded domain, L is a linear eiliptic partial differential operator, and B is a boundary operator.

2.1 The Kansa-MQ method.

Introduce a set @y of nodes (Fig. 1)

On = {{a:,};.V:1 cq, (=} c an} 2)

and the MQ basis functions,

gj(il?) = gj(cjﬂx) Y/ H-E - IJH?{d + C']%v i= L.,N+ Nb, gN+Nb+l($) =1, (3)

where ||z — z ;||z. is the Euclidean norm in R?, ¢; > 0 are called shape parameters [25]. We look for the
approximate solution us to (1) in the form

N+Np+1

un(z) = Y a;g;(2), @

=t



N, 2 ... N N+i
. D—P—D .
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NaNg+ TNy, 1 2 .. N  N+1 N+2N,
—————®—1— o O O 1 +
-h,=— f—hd
0 1
(a) 1D nodes
+ + + + +

{(b) 2D nodes

Figure 1: Nodes for the Kansa-MQ and MQ-PDECB methods: (a) 1D Kansa-MQ nodes (top) and PDECB
(bottom), node numbering is shown; (b) 2D Kansa-MQ nodes (left) and PDECB (right): o - nodes for PDE
collocation. e - BC collocation. ® - PDE and BC collocation, + - nodes added for PDECB, h, is a distance
to the boundary (may be negative, if nodes are inside); h is a mean distance between nodes.

Substituting ux(z) into (1) and using collocation at the nodes O, we obtain the finite dimensional problem

N+Ny+1 N4+Np+1
L Y aglzd| = > asLgi(zi) = f(@), i=1,.N,

j=1 =t
N+Np+1 N+Ny+1
B ( a;9;(x;) | = Z a;Bg;(zi) = glzs), i=N+1L. N+ N, (5)
j=1 i=1
NN
a; = 0.

=1

. . , T ~N 4N
Introducing the notation: a = {ai, .., anang+1) b= (f(z1)s .0 flzN), g(@zns1)ss g(TNEN,):0) € RNV N1

Lgi(z1) - Lgnin+r(m)
Ly=1: S :
La(z~) - L9N+N.,+1(-TN)
Bgi(rx+1) oo Bgvin(zner) Bgn+ny+1(TN41) (6)
B,=|: Lo : , Wz{Lg},
Bgi(zvsny) - Bgnin(znim) BgniNy+1{(TN+N) B,
1 o1 0

we can rewrite the system (3) in the matrix form as

Wa = b, (7)
whose solution is
a=W'b. (8)
2.2 The MQ PDECB method.
Introduce a set Oy of nodes (see Fig. 1)
9;1 = {{II};\;I CQ, {Ix}ii+\}\21 c o9, {Ii}?g\?fﬁlﬁ»l c R \BQ} ) (9)



where the nodes {x,-}i*‘;\'ff;;,bﬂ , which can be inside Q or outside Q, are adjacent to the boundary 89, and
the MQ basis functions,

0,(2) = gy(c;, 1) = Jllz = 2503 + 2 5= 1 N+ Ny gnsanen(2) = 1. (10)

We look for the approximate solution u to (1) in the form

N4+2Ny+1

w(e)= Y, ;@) (11)

j=1

Substituting ux(z) into (1) and using collocation at the nodes @}, we obtain the finite dimensional problem

N+2Np+1 N+2Np+1
Ll S agte) )= Y alg@)=flz), i=1, ooy N 4 N3,
1=l j=1
N+2Np+1 N+2Np+1
B ajg,;(z:) | = Z a;Bg;(zi) = g(zi), 1 =N+1,.., N+ 2N, (12
=1 =1
N+2N,
a; =0
ji=1

. : T
Inirodpcmg the notation: a = (ay, ...,anan,+1) " b = (f(Z1)s o) FENTN)s GIENE Ny +1)5 - glznian, ), 0) €
R‘ '+:’.\h1‘1-

Lai(xy) .. Lgniany+1(z1)
L.’] = : )
Lov(zxany) - Lgnrone+1(TN+N,)
Bai(zx+1) .- Bgnian,(za+1) Bgntany+1(TN+1) (13)
B,=|° P : W= [ f; }
Boi(zxen) - Boveeni(@vam) Bontaneri(En+n) g
1 o1 0
we can rewrite the system (12) in the matrix form as
Wa =b. (14)

3 Continuation for nonlinear elliptic PDEs.
Consider a boundary value problem for a second order system of n parametrized nonlinear elliptic PDEs:

F{u(z).\) = D(a)Au — f(Vu,u,2z,A) =0, in QcR,AER, u() € R, (15)
Bu(z)|z, = 0.

where 0 is a bounded domain. D()) is a positive diagonal n x n matrix, f is smooth. and B is a boundary
operator which we assume. for simplicity, to be linear. For the bifurcation analysis in the process of con-

tinuation we also need to consider the eigenvalue problem for the linearization D F(u,\) of F about the
solution u of (1)

D F(u, Nv(z) = pr(z), in,
Bu(z)|yq = 0. (16)



3.1 The Kansa-MQ method.

To formulate the approximate problem, we first introduce the set @ of nodes
on={{z}l, c (@3N C o0} (17)
and the MQ basis functions,

0;(2) = gj(c;,2) = e = z5llga+ 65 =1 N+ Ns, gN+n+1(T) = 1, (18)

We next define an MQ finite dimensional subspace

N+Ny+1 N+N, o
Sy = (x= Z a,]-gj(~) : Z a; =0, Bx(z:) =0,t= N+1,.,.N+ Ny . (19)
ji=1 =1
The problems (15) and (16), respectively, are approximated by the collocation equations
F(uh(xi)v/\) =0, Up Esh,i=1,...,N, (20)
Lun(zi) = D1F(up, Mva(z) = pvn(zi), Uh €Sk i=1, oy N (21)
Substituting
N+Np+1
un(z) = Y a;95(@) (22)
i=1
N4+Ny+1
w(z) = Y bigila), (23)
Jj=1

into (20) and (21), respectively, and using the definition (19) of Sy, we obtain the following finite dimensional
problems:

j=t

N4+Np+1
(Ga.N), =F | Y ajg5(=), A} =0, i=1,..,N,

N+Np+1
B ( Z (ljgj(.l:,‘)) =0, i=N+1,...,N+ Ny, (24)

J=1
N+Ny

z Qj 20,

j=t

N4+Ny+1 N+Np+1
LI Y bjgilz) ) =x > bigilm), i=1,-uN,
j=1 i=1

N+Np+1
Bl S bgeo] =0 i=N+L.N+N, (25)

j=t
N+ Ny

S b;=0.

i=1



Introducing the notation: a = (a1, Cananea) Ty b= (bry o DN M 1)T € R (N+No+1)

Boi(zns1) .- Bowini(@ne1)  Bonen+(Enr)

By=|"° : : : ’
Bai(znsn,) --- Banen(Tn+m) Bgniny+1(ENEN,)

1 1 0 (26)
Lgi(zy) - Lgngn,m(zi) g(z1) - NN+ (T1)

Ly=1": S yT=1" : :
La(zn) -~ Lgnen,-1(zN) g(zN) o gNeNe+1(TN)

we can rewrite the problems (24) and (25) in the matrix form as

G(a,)) =0, .
Bga =0, 7
Lgb=pulb
Bgb=0. (28)
Implementation 1. Let
0.1 = (al,...,aN)T € R"x‘\’, a,:Z = (aN+1,~~-,aN+N,,+1)T € Rnx(N'H'”;
Lgi(z1) - Lgn(z1) Lgnsi(z1) - Lgnene+1(z1)
1 . . . 2 _ . . .
LQ - . . . ) Lg - . : : y
Lai(z~n) .- Lgn(zn® Lonsi(zn) o Lgnien+1(zN)
gi(z1) - gn{z gne1(T1) o gNNerr(T)
rl — . . F2 _ . . .
alzy) . galzN: gy+1{zN) - AN+ N1 (ZN)
Bgiizn+1) - Box(@ne)
B! =
! BQL(IJ\'ﬁ-J\'b) B.q.V(xN+Nb)
1 o1
Bgxsi(zns1) oo Bgnen(aya) Bgniny+1(Zn+1)
B; - : . .
Bg.\'+1(IN+Nb) BgN+Nb($N+Nb) BQN+1\'I,+1($N+N5)
1 R |
Substituting this into (27), we rewrite it as:
Gia' \) = G(a',a®. \) =0, (29)
where @° solves
2 2 1.1
Bja® = —Bga'. (30



Similarly, we rewrite (28) as

Lipt + L20% = pu (T'0! + T°F7),
Blp! + B2§ =0.

or, eliminating b°, as
Lty — 2 (B2) " Bib = u (100 + 17 (B)) Bib'). (31)

We are interested in continuation of solutions to (29). Therefore, in addition to a', we also treat A as
unknown. and add an algebraic constraint

Ge(a', ) =0, (32)

which defines a parametrization of the solution curve.
Algorithm 1 (Continuation algorithm for the system (29), (32)). Given current approximations to
a! € ®*Y and ) € R, a complete Newton iteration consists of the following steps:

(0) Compute the matrices B}, B}, i, re.
(1) Solve the system (30) to find a’.

(2) Use the expressions (29), (32) to compute the residuals —~G(a*,A), —=Gc(a'. ) and then compute the
matrices DG, D2G, D1G., and D2G. by differencing.

(8) Solve the system

D,Goal +8AD.G = —G(at, A), (33)
DxG;Jal + 6XD2G, = —Gc(al,)\),

where we omitted iteration indices for 3a! and 8X in (33).
(4) Update a' = a' +da' and A = A+ aA.
(5) Solve the generalized eigenvalue problem
Digy = u(TH+T2(B}) B;) b (34)
(to detect bifurcations). Note that D;Gb' = Lyb' — Lg (B2) 7" Bib!, see (31).

Implementation 2. Let U = (Uy,...Ux T be the vector of nodal values of the solution uy (22) of the
collocation problem (20), and let {6}, be the Lagrange basis in Sh:

{OJESh in(IE,)=(s,'j, i,jzl,...,f\f}. (35\
Then up can be written as
N
un(z) =3 Us¢;(2), (36)
j=1

Combining this with the definitions (22) of uy, and (26) of By and T', we have

Ta="U, -
Bya =0, (37)

which defines the 1 — 1 correspondence between U € RN and a € RPN+ Ne D)



The problems (20) and (21}, res'I-)ectively, are written as
GU,A) =G(a,\) =0, - (38)
where a solves (37), and
DiGU N =pV, Ve RPN, (39)
As before, to define a parametrization of the solution curve, &e add an algebraic constraint
G.AU,N\) =0. (40)

Algorithm 2 (Continuation algorithm for the system (38), (40)). Given current approximations to
U e RN and ) € R, a complete Newton iteration consists of the following steps:

(0) Compute the matrices By, T.
(1) Solve the system (37) to find a.

(2) Use the expressions (38), (40) to compute the residuals —~G(U, ), =Gc(U,)) and then compute the
matrices DG = D\G(U, A), D2G = Ds2G,(U,A) D\G: = D1G(U,N), and DG = D,2G.(U, X) by differ-
encing.
(3) Solve the system

D1G8U + 6AD2G = —G(U, A), (41)
D1\G .U + 8AD2Ge = =Gc(U, ),

where we omitted iteration indices in (41) for 8U and 5.
(4) Update U = U + U and A = A+ 8

(5) Solve the eigenvalue problem (39) (to detect bifurcations).

Remark 1 For our numerical ezperiments. we implemented in AUTO (5] Algorithm 2 for the Kansa-MQ
method and Algorithm 2a, below, for the MQ PDECB method. The principle reason for choosing Algorithm
2 rather than Algorithm 1 is that the eigenvalue problem (39) (and (56)) is a standard eigenvalue problem
whose solution is supported by AUTO. On the other hand, the eigenvalue problem (34) is a complicated
generalized eigenvalue problem whose solution is not supported by AUTO.

3.2 The MQ PDECB method.

To formulate the approximate problem, we first introduce the set ©4 of nodes

i . N+2N

o = {2} c 0 {@)Rh co0 (mhN A o F \oa}, (42)
where the nodes {z; }:I:\f;‘,”\bﬂ , which can be inside Q or outside (7, are adjacent to the boundary 8§, and
the MQ basis functions,

gj('r) = gj(Cj,I) = V H.’L‘ - r,‘x\;d + C?a .7 = 15 "'ai‘v + ‘\Tb’ gN+2Nb+l(x) =1 (43)

We next define an MQ finite dimensional set (which is not a subspace, in general)

N42Np+1 N+2Ny
Sl = {Xz ST a0 S a; =0, Bx(z:) =0, Fx(z:),A) =0, i=N+1,..,N+Np o

=1 j=1

(44)



The problems {15) and (16), respectively, are approximated by the collocation equations

F (uh(zi)x A) = 07 up € Sflu i = 1" '-'7Nv (45)
LU,‘L(Ii) = D, F{up, /\)L'h(Ii) = uvh(xi), Vp € S}n 1 =1, N (46)
Substituting
N42N,+1
unlz) = Y, a;g;i(2); (47)
j=1
N+2Ny+1
m(@ = 3. by, (48)
i=1

into (45) and (46), respectively. and using the definition (44) of S}, we obtain the following finite dimensional
problems:

(Gla,\), = F (TN ayg(ei),2) =0, i=1 N,
(Gla,N), = F (T4 a,0,(2),0) =0, i=N 41, N+ N, (49)
B (23\:{‘2‘\',,1\—1 a-jg](Ii)) =0, i = N + 1,---,N+ Nb,

NH2Ny,
Zj:l a; =0,

N42N+1 N42Np+1
L Z bjgj(x,') = U z bjgj(:z:i), i=1,...N+ Ny,
=1

=1

J=t
N42N

Z b; =0.
j=1

N4+2N+1
Bl S biglz)] =0 i=N+1L..N+N, (50)

. . . DN
Introducing the notation: a = {ax, s @N2Ns 1), b= (bry e DNsaNg+1) T € RAX (N 42N +1)

Bai(zxs1)  --- Banyan(Tyit) Bgniane+1(TN+1)
B, =" : : (51)
Bar(Ixen) --- Bonian(@n+w) Bgn+an+1{ZN+N)
1 o1 0
Lgi{x) . Lgnyany+r(z1) gi(z1) e GN+2Np+1(Z1)
Ly=1": S , T=1": o ;
Lai{znens) - Lanvianeri(@yam) DLENEN,) - IN+2Ne+ L (TN4N)
we can rewrite the problems (49) and (50) in the matrix form as
(GlaN), =0, i=1,...N,
(G (l,)\))i =0, i=*V+1a--'aN+Nba (52)
Bya =0,
L.b= ulb, -
B.b —l(; (33)
,b=0.

©



Implementation 2a. Let U = (un(z1), -y un(zn))T be the vector of nodal values of the approximate
solution ux. Then by the definitions (47) of up and (51) of B, and T, we have

(G(a,\)), =0, i=N+1,..,N+N,
Ta=U, (54)
Bga =0,

which defines the 1 — 1 correspondence between U € R**N and a € Rex(N+2Nb+1)
The problems (45) and (46), respectively, are written as

(G, N), = (G(a,N); =0, 1= 1.V, (53)
where a sclves (54), and L
DiGWU NV =uV, VE€ RN, (56)
As before. to define a parametrization of the solution curve, we add an algebraic constraint
G.(U,A) =0. {37)

Algorithm 2a (Continuation algorithm for the system (55), (57)). Given current approximations to
U e B**N and \ € R, a complete Newton iteration consists of the following steps:

(0) Compute the matrices B,, T.
(1) Solve the system (54) to find a.

(2) Use the expressions (33). (57)
matrices DG = D1G(U.N), D
encing.

to compute the residuals —=G(U, \), =G.(U,)\) and then compute the
2G = D2G.(U,\) D1Ge = D1Ge(U, A), and D2G = D2G: (U, A) by differ-

(3) Solve the system

D\G8U + 6AD2G = =G(U, ), (58)
D[GC(SLT + 6AD2GC = —gc(Us }‘)’

where we omitted iteration indices in (58) for U and A
(4) Update U’ = U +6U and A — A+ A

(5) Solve the eigenvalue problem (56) (to detect bifurcations).

4 Numerical experiments for 1D and 2D elliptic PDEs.

We present examples of solution of linear 1D and 2D elliptic PDEs and continuation of solutions to nonlinear
1D and 2D Gelfand-Bratu equation. Each problem is discretized by the Kansa-MQ method, see Eq. (38),
and the MQ PDECB method, see Eq. {55).

In the case of nonlinear problems. we perform continuation of solutions by Algorithm 2 for the Kansa-MQ
method and by Algorithm 2a for the MQ PDECB method. We compare the accuracy of the detection of
the limit point {or fold) by the two methods. We recall that a solution (ug, Ao) of equation f(u,A) =0
is a (simple) limit point if the solution curve in (u(s), A(s)), for some parametrization s, makes a turn at
(up. Ao). This is expressed formally as dim A (fu(uo, Ao)) = 1 and fa(uo, Xo) € R (fuluo, Xo))-

We will use throughout the notation h for the average distance between the nodes. Then h = 1/(K-1)
for a 1D problem on (0,1) and for a 2D problem on (0,1) x (0,1), where K is the number of nodes along
each axis.

To improve the accuracy, we employ 2 simple adaptation strategies for the shape parameters C =
{1, ecngn, ) for the Kansa-MQ method, see Eq. (18), and C! = {c1,...,cN+2n,} for the MQ PDECB
method. see Eq. (43); for the nodes O, for the Kansa-MQ method, see Eq. (17), and 0} for the MQ PDECB
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method, see Eq. (42). To be specific, assume that Q = (0,1) x (0,1) and consider the case of the Kansa-MQ
method. Let r(z,y,C,©4) be the residual. Our strategies are all based on the Nonlinear Least Squares
Method which minimizes the Ly norm ¢(C. ©4) = ||r||, of the residual. By the quasi-uniform distribution
of nodes we will mean the distribution of nodes, where the nodes adjacent to the boundary 9 are placed

at the distance i = 6hg, 0 < 8 < 1, from 8Q. while the remaining nodes are distributed uniformly with the
distance hg between them.

Strategy 1. Uniform distribution of nodes On; €1 =..=CN4N, =C; min @(C,0n),
c

Strategy 2. Quasiuniform distribution of nodes Op; €1 = ... =CN4N, =G migl @(C,04).
C,
In all examples below we use the adaptation strategy 2.

Example 2 4 1D model linear problem

Upe + (27)%sin(27z) =0, m Q=(0,1),
w(0) = u(1) = 0. (39)

The analytical solution is
Uezact = SiN(27ZT).

Numerical results are presented in Fig. 2a.

10 PDE BY PDECB AND KANSA-MQ 10 BRATU-GELFAND EQUATION 8Y PDECB
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0.001 b ]
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5 . 8 18-06 ¥ “x
2 x &
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@« ol A
16-06 b -4 180T o, E
s .
o
1a-08 b \'Ll
1e-07 b RN .
1008 b 4
]
B S roro . . . . ,
4 3 8 50 12 ta 16 18 22 2 4 6 8 10 12 14
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(a) 1D linear PDE solution (b) 1D continuation

Figure 2: Convergence properties of the Kansa-MQ method and the MQ PDECB method:

(a) 1D linear problem, Eq. (59): the Lo norm of the solution error is plotted, in the logarithmic scale, versus
1/h. where h is the average distance between the nodes. The roundoff error starts to dominate at 1/h =11
for Kansa-MQ method and at 1/h =~ 18 for the MQ PDECB method.

(b) The location A of the limit point for 1D Bratu-Gelfand problem, Eq. (61). Relative error in X is plotted

in the logarithmic scale versus 1/h.
Example 3 4 2D model linear problem

Au — (227y% + 22%y + 2zy° — 6zy)eEt¥)) =0 inQ=(0,1) x (0,1),

u |gn= 0. (60)
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2D MQ INTERPOLATION, AND SOLUTION BY PDECB. KANSA-MQ 1D BRATU-GELFAND EQUATION
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(a) 2D linear PDE solution and interpolation (b) 2D continuation

Figure 3: Convergence properties of the Kansa-MQ and the MQ PDECB methods:

(a) 2D linear PDE, Eq. (60); the Lo norm of the solution error is plotted, in the logarithmic scale, versus
1/h, where h is the average distance between the nodes. The roundoff error starts to dominate at 1/h ~ 9
for the Kansa-MQ method and at 1/h ~ 11 for the MQ PDECB method. We also provide, for comparison,
the error in the MQ interpolation of the exact solution Uezact-

(b) The location A of the limit point for 2D Bratu-Gelfand problem, Eq. 62). Relative error in A is plotted.
in the logarithmic scale, versus 1 /h.

The analytical solution is
Uezgz: = I(I - 1)y(y - 1)e(z+y).

Numerical results are presented in Fig. 3a. We do not have an ezplanation of why the M@Q PDECB solution
is more accurate than the interpolation.

Example 4 1D Gelfand-Bratu problem. This is a scalar problem

v ~xe* =0, inQ=(0,1),

u(0) = u(1) = 0. (61)

that appears in combustion theory and is ..sed as the demo example exp in AUTO97 [5] (fifth order adaptive
orthogonal spline collocation method). There is a limit (fold) point on the solution curve. We take the value
of \ at the limit point found from demo ezp (K > 50} as eract. The relative error in location of the limit
point is shown in Fig. 2b. See also [11] for additional numerical results and references.

Example 5 2D Gelfand-Bratu problem

Au+ \e® =0, inQ=(0,1)x(0,1),

62)
u lan=0. (62)

This problem was studied by a number of authors. In [6] the problem was discretized with a high order
orthogonal spline collocation method with sparse Jacobian. There is a limit (fold) point on the solution
curve. The ezact location of the limit point is assumed to be at the value of X obtained in [6] on a 16 x 16
mesh with 4 x 4 collocation points. The reiative error in location of the limit point is shown in Fig. 3b. Note
that the curve for the Kansao-MQ method was obtained [11] using quadruple precision which considerably
slowed down computations, while we use snly double precision with the MQ PDECB method here. See also
[11] for additional numerical results, references and a discussion of the operation count.
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SOLUTIONS NEAR THE BOUNDARY
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(a) 1D boundary layer solution (b) 1D Gelfand-Bratu residual

Figure 4: (a) 1D linear problem with a boundary layer, Eq. (63) with € = 10~3. The MQ PDECB solution
with 21 nodes and the analytical solution tezact are plotted versus z in (0, 0.1).
(b) The residuals for the solutions of 1D Gelfand-Bratu problem (61) by the Kansa-MQ and the MQ PDECB

methods are plotted versus z with 1/h=9. A =2.5. The L., residual norms are 4.2 X 10-3 and 3.3 x 1075,
respectively.

Example 6 A 1D model linear singular perturbation problem studied in [23]:

€Uzr +uUz =0, in Q = (0,1),
u(0) =0, u(1) =1. (63)

The analytical solution is
Uegner = (1 — /) /(1 — e M),

It was demonstrated by Hon that this problem can not be solved by a standard Kansa-MQ approach fore < 1,
and the adaptive technique proposed can be an efficient way to treat such problems [23].

Here we use the MQ PDECB to solve this problem for € < 1 with relatively small number of nodes. For
e = 1073, the MQ PDECB solution with 21 nodes and the ezact solution are plotted versus z in Fig. 4a.
The Lo, norm of the solution error is 0.001 for the MQ PDECB method, while it is 0.22 for the Kansa-MQ
method with 101 nodes (not shown). Note that for € = 10~* one can attain the same error 0.001 in the MQ
PDECB solution with 41 nodes (not shoun).

Example 7 Fig. 4b shows the residual distribution for the solutions of 1D QGelfand-Bratu problem (61) by
the Kansa-MQ and the MQ PDECB methods with 1/h =9, A = 2.5. The Lo residual norms are 4.2 X 1073

and 3.3 x 10, and the Ly residual norms are 7.8 x 10-* and 1.1 x 1079 for the Kansa-MQ and the MQ
PDECB methods, respectively.

5 Conclusions.

We have formulated an improved Kansa-MQ method with the PDE collocation on the boundary (MQ
PDECB). The idea of the method is to add an additional set of nodes adjacent to the boundary and, corre-
spondingly, an additional set of collocation equations obtained via collocation of the PDE on the boundary.
We have applied the MQ PDECB method to several model 1D and 2D linear and nonlinear elliptic PDEs and
have presented results of our numerical experiments. Numerical results demonstrate considerable improve-
ment in convergence of the MQ PDECB method over the Kansa-MQ method, with both methods having
exponential convergence with essentially the same rates.
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Abstract

We present an alternative method for treating numeri-
cally a problem of viscous flow with a boundary layer
that is based upon regularization of the Navier-Stokes
equations. Shishkin (1997) showed that grid methods
perform poorly in dealing with the boundary layer. Tra-
ditional grid methods give poor agreement with the ex-
perimental data for high Re number flows. Shishkin
showed that the remedy for these difficulties is the con-
struction of special meshes in boundary layer. We
present an alternative approach that is more efficient
and less mesh dependent. Our approach is based upon
the regularization of the Navier-Stokes equations, and
we discuss the mathematical and physical aspects of
this approach. Numerical results that we obtained by
our regularization process in 2D and 3D are compared
with the experimental measurements. We compared our
model against : (1) The 3D driven cavity flow by Kos-
eff and Street (1982) at Re = 3200 and 10,000: (2) a
2D backward facing step flow by Kim et al. (1980)
at Re = 44.000; and (3) a 3D thermal convection ina
cylinder by Bogatirev et al. (1996) at Ra = 1000 1o
100.000. This proposed regularization model is not a
turbulence model, and no additional equations are in-
troduced. Recipes for the choice of the regularization
parameter are presented.

Keywords: Navier - Stokes equations, Boundary Layer.
Regularization, Finite element method

1 Introduction

Driven cavity problem is widely used as a benchmark
for comparison of numerical codes. The agreement be-
tween different codes is within 1% or better. Published
2D Navier-Stokes (NS) solutions can qualitatively de-

scribe the flow structure, the number and location of
vortexes and their size, but show poor agreement with
the experimentally measured velocity profiles by Kos-
eff and Street (1984) for Re = 3200 and 10* (see [1]
and references therein).

Results obtained by Ghia et al. [2] on a fine mesh
(256x256) for Reynolds number up to Re = 10* are only
the stationary solutions. While the actual fluid flow is
essentially transient and 3D, the measured mean veloc-
ities in the plane of symmetry (y = 1.5) appear to be
2D. A disagreement of 2D numerical solution with ex-
perimental data is by a factor of 2to 3 (Fig. 1,2). A
3D NS solution still can not improve this discrepancy.
and known 3D results differ significantly (see 1992
GAMM-workshop [3]). One may justify that the flow
turbulence is a reason for a disagreement. We tested
this and solved the problem using a standard k —€ turbu-
lence model that is available in most commercial CFD
codes. Our results obtained with the CFD2000 code {4]
are presented in Fig. 1, 2 as well. One can see that the
agreement of the k — € model results with experiments
is still very poor.

We observed a similar discrepancy with the exper-
iment in the numerical modeling of weakly turbulent
thermal convection in a vertical slot (H /L =11.2)
heated from a side, the Rayleigh number was Ra; =
3.75- 108, and Pr = 15. A direct numerical solution (us-
ing Boussinesq approximation) allowed us to describe
basic features of the flow evolution and large vortex dy-
namics [5].[6].

Mean vertical temperature profile obtained agrees
well with the experimental data (7], but mean velocity
profiles differ significantly from those data. Local mag-
nitudes of computed velocity were about twice higher
than ones in the experiments [7]. The Reynoids number
based on the computed velocity was of the order 10%. A
use of more detailed time and space discretization did



not improve the resuits.
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Figure 1: Driven cavity problem, Re = 3200: Compar-
ison of horizontal velocity profiles at x = 0.5 for nu-
merical (lines) and experimental (squares) results @ 1-
Navier-Stokes solution, 2 - £ — € model solution

Recently a poor ability of grid methods to deal
with boundary layer has been proved theoretically by
Shishkin [8]. The estimation for the solution error is
given as O{1) for uniform meshes. if thin boundary
laver is present. Shishkin pointed out that the rem-
edy for these difficulties is the construction of a special
meshes in the boundary layer (now called as Shishkin
meshes). To construct a mesh, one needs to use the
boundary layer thickness. that is not known in advance.

Shishkin's theory reccived confirmation for a driven

cavity flow problem in [9]. It was shown that the
computational results are extremely mesh sensitive for
Re = 3200 and higher. Still. with some special fine
mesh resolution near the walls. proposed in this paper,
it was possible to obtain a solution that agrees well with
the experimental data [1].

In this paper. we present an alternative approach that
is efficient and less mesh dependent. It is based on the
regularization of the Navier-Stokes equations. Mathe-
matical and physical aspects of this approach are dis-
cussed. Presented model is a major simplification of the
higher order continuum model for incompressible vis-
cous flow proposed in [10].

The governing equations are presented. a model is de-
seribed and applied to a several viscous fluid flow and
thermal convection problems. Comparison with the ex-
perimental data and results obtained by different meth-
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Figure 2: Driven cavity problem, Re = 3200: comparni-
son of vertical velocity profiles at z = 0.5 for numerical
(lines) and experimental (squares) results : [-Navier-
Stokes solution, 2 - k — € model solution

ods are discussed as well.

2 Governing equations

We consider a flow of incompressible viscous fluid
in a closed domain. The governing equations are the
following. The momentum equation is

av +(VV)V—Re™'V2V4+Vp - F=0 (1)
while continuity equation is
V-v=0 )

where Re = VoL/v - the Reynolds number, Vo - velocity
scale, L - hydrodynamic length scale, v - kinematic vis-
cosity, F is a body force. For a case of thermal convec-
tion the body force is F = GrRe™' - © ¢, (Boussinesq
approximation), where @ is a nondlmensxonal tempera-
ture, Gr is the Grashoff number and e is a unit vector
in the direction of gravity. In the case of thermal con-
vection the energy equation complete the formulation:

a0

= (VV)0 = Pr-'Re”'V"0 (3)

where © is a nondimensional temperature scaled by

= (T — Teota) /AT, AT = Toor — Teotg - The Prandtl,
Grashoff and Rayleigh numbers are respectively Pr =



v/k, Gr = Ra/Pr, and Ra = BATgL*k~'v™", where B,
g. k are respectively the cocfficient of thermal expan-
sion, gravitational acceleration, and the thermodittusiv-
ity.

Boundary and initial conditions accomplish the prob-
lem formulation and will be given for each of problem
considered below.

3 Regularized Navier - Stokes
equations

The regularization proposed consist in the modification

of the continuity equation (2) that becomes as follows
V.v=1V-(Vp-F) 4)

where 1° is a small regularization parameter. For T° —

0 we approach the original equation (2). A boundary
condition for the pressure on a wall is

(Vp—F)-n=0, (&)

where n is a unit wall normal vector. Equations (4)
and (5) present the main feature of this method. and en-
sure a balance of the normal component of the momen-
tum on the wall. We will show in the following sec-
tions that equations (1), (3), and (4) with (3), called here
as regularized Navier-Stokes equations (RNS), are more
suitable for use with the finite element method (FEM).
The solution of the RNS by FEM can result in a bet-
ter agreement with the experimental measurements for
high Reynolds number flows. The RNS model showed
also a good agreement with the analytical solutions for
a very slow flows with thin boundary layer in the case
of magnetic field suppression of the semiconduczor melt
flow in crystal growth [11].

For a justification of this regularization one can be
referenced to the new hydrodynamic equations pro-
posedin [12] that have the fluctuation terms of this kind.
Equation (3), according to the theory in [12], means the
absence of the hydrodynamic fluctuations on the wall.

Similar term. as in the right-hand side of eq. :4), has
been obtained as a result of the “‘consistent treatment
of time-advancement for the divergence-equation” by
Lohner {13]. A discretization time step A was used in
[13] instead of parameter T° as in our RNS model.

A nondimensional regularization parameter T 1S
expressed through dimensional scales as foilowing.
=1L~ 'V, where T is some time scale. Note, that
the dimension of a product Tv is a square of length. We
introduce a regularization length scale [, [ = <v and
rewrite T° as T° = [2L7?Re = K - Re, where K = 12/L%

The value of T (or [) is not known in advance, and we
provide recipes on a choice of these values at the dis-
cussion of the results.

Such a regularization has an additional usetul featurc
for the FEM. It allows to use the same order finite ele-
ment approximation for the velocity and pressure with
all the unknowns located at the same nodal points.

4 - Problems solved

We apply the RNS model for the solution of the follow-
ing problems:

1) Lid-driven cavity problem (2D and 3D). We
compare our results with experimental data obtained by
Koseff and Street[1] for Re = 3200 and 10*. We solve
equations (1) and (4) numerically for the unknowns
(V,p) in the 2D region (x.2) = [0,1]{0,1]. A 3D ver-
sion of the problem corresponds to Koseff & Street ex-
periment (1] with the domain (x,y,z) = [0, 1][0,3}{0, 1].
The boundary conditions are: V = (u,v, w) = (1,0,0)
at the driven lid (z = 1); V = 0 on the other walls, and
eq. (5) holds on all the walls. The undefined constant
in the pressure field is eliminated by setting p =0 at
(x,y,2) =(0,0,0).

2) Backward facing step flow (2D). We solve for a
flow in a plane channel with sudden (step) expansion
that corresponds to the experiment by Kim et al. [14].
The ratio of a step height H to the channel outlet width
Lis H/L = 1/3. The Reynolds number for the exper-
imental flow is Re = 4.4- 10* with H as a length scale
[14], or Re, = 1.32-10% in [15] when the channel outlet
width L is used as a length scale. The flow profile V(v)
is given at the inlet and p = 0 and stress free conditions
at the outlet. We have used the following domain geom-
etry: H =1, L =3, total length L7 = 12, and the length
from the inlet to the step L, = 4.

3) Thermal convection in a cylinder (3D). Ther-
mal convection flow in a differentially heated horizon-
tal cylinder is considered. The experimental data by
Bogatirev et al. [16] have been used for comparison.
These data have been obtained during the ground tests
for this device, a thermal convection sensor designed
for the space micro-acceleration measurements; it was
later flown in space on Mir station. Numerical results
from the 3D finite volume simulations by Bessonov (17
have been also used for a comparison. The temperature
distribution on a cylinder wall was (i) linear tempera-
ture profile, and (ii) computed using a real, finite wall
conductivity (adjoint problem). The body force in(1)is
F = (0.0.RaPr8), and Re™" in (1) is to be replaced by
Prandtl number Pr = v/k. Experimental data are avail-
able for the Rayleigh number Ra in a range from 10% to



10° that present the temperature difference between two
points inside a cylinder.

5 Finite element model and solu-
tion method

Proposed model allows efficient implementation by the
finite element method. Both velocity and pressure arc
approximated by the same order finite element basis
functions. We used linear basis functions on triangle fi-
nite elements in 2D and trilinear on hexaedral elements
in 3D.

Note that when t° = 0, we obtain the NS equations,
and the FEM equations become incompatible. Itisa
well known problem, and can be resolved if a different
order FE basis is used for the velocity and pressure ap-
proximation (see e.g. [18]). When 1° is in the range of
10-7 to 10—+, our solution coincides with the NS one
up to Re = 10* in a case of driven cavity problem. The
value of T smaller than 1072 results in the wiggles in
the velocity profiles. At low Re, Re < 1000 the solu-
tion practically coincides with the NS one for any T
between 10”7 to 1072,

A CFD code FEMINA/3D [18],[19] modified for a
new model was used in the numerical experiments.
Three scalar equations (or four in 3D case) from (1),
(4) are solved simultaneously. The nonlinear algebraic
system of equations, resulting from the FEM discretiza-
tion. is solved iteratively by a Newton method. Cor-
responding linear system is solved by robust precondi-
tioned iterative CGS-type method with preconditioning
by the high order incomplete decomposition. We used
a CNSPACK linear solver with a compact sparse matrix
storage (see on details of the solver in [201,[22]). A first
order decomposition was found to be quite enough for
the RNS. while the second or third order is required for
the NS related linear systems [20].

The solution is considered converged when an alge-
braic equations residual norm is || r |[.< 10~ (typi-
cal initial residual value were 1 to 10%). In the case
of the thermal convection problem, the energy equation
is solved separately at each time step or Newton iter-
ation. Selected solution method and a corresponding
software implementation make it possible to solve large
time-dependent problems (up to 300,000 unknowns) on
the SGI 02 workstation.

6 Results and discussion

Initially for each problem we varied the value of tor K
and compared numerical results with the experimental

ones and with the NS. At low Re < 1000 the solution
practically coincides with the NS one for any 1* be-
tween 10~7 to 1072 for problems 1 and 2. We solved
the transient problem equations (1), (4), or (1), (4) and
(3) and have been able to obtain stationary solutions. A
more efficient approach in such a case was a solution
of the stationary problem by the Newton technique. In
those cases there is a good agreement between the NS
and the experiment when it is available (for example,
Re = 50'to 500 in [21}).

Mass conservation in the continuity equation was
thoroughly analyzed. The local values of divV of the
numerical solution were examined. Note, that the nu-
merical solution satisfies the discretized equation ex-
actly only at specific points (nodes, integration points or
collocation points etc. depending on the method used),
and only approximately at an arbitrary point of the do-
main. As the mesh size decreases, the accuracy of the
approximation of the equation improves (typically as
h?, the square of the mesh size).

The value of divV for the numerical solution at an
arbitrary point is non-zero, and we found that it was of
the same order both for the RNS and NS numerical solu-
tions. The values of divV exhibited spatial oscillations
with amplitudes of 103 to 1072, The averaged value
of divV (integral over the region near the vicinity of any
point) was the same order for RNS solutions as for the
NS ones. The integral over the whole domain of divV is
of the same order for both RNS and NS. Therefore, we
see that in the numerical solution, a regularization term
in the RNS continuity equation does not create more
numerical mass fluxes. than in the case of NS.

For a comparison we also present the results ob-
tained with a standard k — ¢ turbulence model, using
the commercial code CFD2000 [4]. A k—¢ turbu-
lence model was developed for computations of tur-
bulent flows, when the NS equations can not provide
reasonable results. Viscous term in the NS momentum
equation is replaced by a different stress term with a tur-
bulent Reynolds number Re,. Two more nonlinear equa-
tions are added to the system, that govern the turbulent
kinetic energy k, dissipation rate € and provide evalua-
tion of the Re,. These equations contain eight empirical
constants for a standard modet (11 or more in improved
models). The standard k — € turbulence model is im-
plemented in many commercial CFD codes and widely
used in the solution of engineering problems.

6.1 Driven cavity problem

We used 81x81 nodes with a homogeneous triangular
mesh for 2D computations. Same mesh with quadratic
(6-noded) triangles and linear basis FE functions for
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Figure 3: Driven cavity problem. Re = 3200. Compar-
ison of horizontal velocity profiles (1-4) for numerical
(solid and dashed lines) and experimental (squares) re-
sults and vertical velocity profiles (5-8) for numerical
(solid&dashed lines) and experimental (triangles) re-
sults : 1-NS, 2 - k£ — £ model, 3-RNS (2D),4-RNS (3D);
5-RNS (3D), 6-RNS (2D), 7 - k — & model. 8-NS

pressure and quadratic for velocity was used for the NS
computations. We note at once that turther mesh refine-
ment did not influence the results for both flow regimes
considered. For Re > 10} the RNS and NS solutions
become noticeably different for T > 102, We varied
the value of K to match the experimental velocity pro-
files at Re = 3200 presented in {1]. Good agreement
was obtained. when K = 1.5~ 107+

Using the same value of K as above, we computed the
RNS solution at Re = 10*, for that [1] also provides the
data. The results are presented in Fig. 3. The error es-
timates for experimental points are | to 10%, according
to [1]. Therefore. we can conclude. that the RNS so-
lution is in better agreement with the experimental data
than the NS solution. Indeed, at this value of Re there is
significantly greater difference between the NS solution
and the experimental results. The K —¢ model results
also disagree with the experimental data.

Fig. 3 and 4 present the experimental measurements
and numerical results for 1 and w velocity components
obtained from the RNS (2D and 3D), 2D NS, and 2D
k — € model. The experimental data are shown for the
symmetry plane (x.z) at y=1.5 along the lines x =0.5
and z =0.5 of the 3D cavity. that has relative (x:y:z)
dimensions 1:3:1. Since strong instantancous velocity
fluctuations were observed. the experimental points cor-
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Figure 4: Driven cavity problem, Re = 10.000. Com-
parison of horizontal velocity profiles (1-3) for nu-
merical (dashed lines) and experimental (squares) re-
sults and vertical velocity profiles (4-6) for numerical
(dashed lines) and experimental (triangles) results: 1-
NS. 2 - k — € model, 3-RNS (2D); 4-RNS (2D), 5-k—¢
model, 6-NS

respond to time averaged values of the measured veloc-
ities [11.

The results obtained with RNS model are in good
agreement with the experimental data for Re=3200 and
10,000 and are an improvement upon previous results
obtained using the Navier-Stokes equation.

An important feature of our numerical experiments is
the parameter K = [2/L?. We can estimate /, using the
value of K found and the experiment description from
[1): L=15cm,so !~ 0.58 mm. This value of I is a good
approximation of the "Kolmogorov microscale™ lexp ~
0.5mm (the smallest scale of the flow nonhomogene-
outy, viscous dissipation scale) that was observed in the
experiment ([1], p-398).

That is one of the ways to determine the actual value
of T or K for the RNS model in advance, that is the
experimental approach. We remind the reader that for
low Re numbers the value of 1" is actually insignificant
and can be chosen in a rather wide range. It is the case
for the problem 3 (thermal convection).

For 3D flows we have solved the RNS for Re = 3200
with the mesh of 41x41x33 nodes (221,892 unknowns),
refined near the walls, for a half of the cavity. The sym-
metry condition was used on a symmetry plane. Our
resuits of modeling are presented in Fig. 3 as well. One
can see that velocities obtained for both 2D and 3D pro-
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Figure 5: Backward facing step flow, Re = 44,000.
Comparison of the horizontal velocity profiles at x =
5.33 for the experimental [14], RNS and k — & model
results.

files are close to the experimental data except in one re-
gion. For the Re = 10* we did not see any 3D numerical
results published for this case. The numerical solution
for our model does not exhibit strong oscillations as a
measured experimental velocities for both flow regimes
considered. In the case of Re = 3200 we are even able
to obtain a stationary solution by the Newton technique.

6.2 Backward facing step flow

The numerical results for a 2D backward facing step
fow at Re = 4.4 10° (referenced as Re = 1.32- 10°
in [15]) were obtained and compared with experimen-
tal measurements {14). We used a 110x60 mesh re-
fined near the walls and did computations starting at
low Reynolds number and increasing Re by small incre-
ments until 434.000. Fig. S presents the computed ve-
locity profile at x = 5.33 (x = 0 at the begin of the step),
the experimental mean velocity measurements [14] and
the k — £ model results.

The RNS model results agree with experiment for
both the velocity profile and the recirculation zone
length X.. Our result is X,/H = 7.50 and the experi-
mentally obtained one is X;*7/H = 7+0.5. The value
of T° used in the computations was in a range from 1072
to 10~7. It did not influence noticeably the results. For
a smaller T° is was more difficult to reach the steady
state solution at Re = 44.000: we have to use more and
smaller increments in Re number to reach the final value
of Re. If the increment in Re number was large, the flow
pattern bifurcated to the unsteady flow with the vortexes
periodically originating from the recirculation zone and
flowing downstream. Our conclusion is that the numer-
ical RNS solution for this problem does not depend on

the value of T°.

The solution with a standard k — € model gives the
velocity profile at x = 5.33 that has no backward flow
at all [15]. A standard k — € model underpredicts the
reattachement point (recirculation zone length X;) by a
substantial amount of 20-25% according to paper {15],
where different turbulence models have been analyzed
for this problem.

63 'fhermal convection in a differentially
heated horizontal cylinder

The RNS model is applied to the solution of the problem
of convective 3D flow in a differentially heated horizon-
tal cylinder. Initially a linear temperature profile was
assumed to be given on a cylinder wall. Experimental
data by Bogatirev et al. [16] and finite volume simu-
lations by Bessonov [17] are used for the comparison
at Rayleigh number in the range 10 10 1.2-10° (Fig.
6a). For the linear temperature distribution on a cylin-
der wall we obtained a good agreement with the numer-
ical results by Bessonov [17], obtained by the 3D finite
volume method for the NS equations. The agreement
with the experimental data was not good for Ra number
more than 2000 (solid line in Fig. 6b). The computa-
tions have been also done in [17] for a real, finite wall
conductivity. A thermodiffusivity data for a stainless
steel was used and adjoint problem was solved. The
agreement with the experimental data has been signifi-
cantly improved (dashed line in Fig. 6b).

The value of T° used was 1077 to 10~%, and it did not
change noticeably the RNS results.

Another successful application of the RNS model to
a 3D thermal convection flows with vibrations applicd
is presented in [23]. The application to the problem of
magnetic field suppression of the semiconductor melt
flow in crystal growth is considered in [11], where a
good agreement with the theoretical asymptotic solution
is obtained.

7 Conclusions

A numerical model for incompressible viscous flow is
proposed. It is based on the regularization of the Navier-
Stokes equations. Good agreement with the experiment
is obtained for a driven cavity flow at Re = 3200 and
10%. The regularization parameter found to be related
to the experimentally observed spatial fluctuation scale.

The RNS model solution approaches the NS one for
small Re number. For high Re number the RNS solu-
tion is more close to the experimental data than the NS
solution (driven cavity flow, backward facing step flow).



Good agreement with the experimental data fora 3D
thermal convectionin a horizontal cylinder has been ob-
tained at Ra = 10% to 10°.

The optimal value of the regularization parameter T

160 still remains an open problem. We have found that the
B 4338 numerical solution depends on the regularization length
9380 | for the driven cavity problem, and the optimal value
§88 of I is the same for both the 2D and 3D RNS solutions
TEMP and for all the flow regimes considered (Re = 3200 and

AT

ARNS
0.2

0.1

a Experimental Data 1

0 2 4 6 8 10 12 14 186

Ra x 10,000
(b)

Figure 6: (a) Thermal convection in 3D differentially
heated horizontal cylinder, temperature field in the cen-
tral X-Z plane. Ra = 10°%; (b) Comparison of tempera-
ture difference AT versus Ra number with experiment
[16] and finite-volume computations: squares - exper-
imental data. solid line - numerical results for perfect
wall conductivity with the NS [17], triangles - results
with RNS: dashed line - real wall conductivity (steel) is
used [17]; here AT is a measured temperature difference
between locations marked as "1 and 72" in (a).

10,000). The value of [ agrees with the "Kolmogorov
microscale” observed in the experiment [1].

The value of T* (or [) is not significant for a 3D
thermal convection in a horizontal cylinder and for a
backward facing step flow (Re = 44,000). The RNS
solutions agree with the experimental data and do not
change even if T° is changed by few orders of magni-
tude.
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Abstract

A hierarchical family of methods for highly accurate solution for viscous flows at high Reynolds number. flows
with boundary layer is presented. Note, that thin boundary layer can occur even at low Re, e.g. in flows of electrically
conductive fluids under strong magnetic field at Hartman number Ha >> 1. The main feature of the methods proposed
is the restoring of conservation laws at the boundary. Numerical solutions using this new approach compare favorably
with available exact or asymptotic ones and experimental data.

Introduction

Difficulties with the numerical solutions of Navier-Stokes (NS) equations for high Re number flows have been ref-
erenced usually to insufficient mesh resolution, complicated flow physics, turbulence etc. Shishkin et al. in series
of papers (1995-1997) shows theoretically that grid methods perform poorly in dealing with the boundary layer and
provides the estimation for numerical solution error as O(1) for uniform meshes [1]. It was proposed the construction
of special meshes as a remedy for these difficulties with more optimistic error estimation as O(h'/™), h is a mesh
size, with m = 9 or more. Failures of numerical solutions to obtain good agreement with experimental data during
last decades can be referenced as confirmation of Shishkin estimates (lid-driven cavity flow: experiments [2] versus
simulations [3]; thermal convection in a vertical slot: experiments [4] versus (5], etc.). Successful results with imple-
menting Shishkin-type strategy are obtained in [6]. To construct Shishkin mesh, one has to use the boundary layer
thickness that is not known in advance. Meshless methods have similar drawbacks in such problems (see e.g. 7.

The facts above and recent experiments with different formulations [8] and regularizations [10] for the viscous
flow problem resulted in uncovering the main reason for poor numerical results: conservation laws are violated at the
boundary in numerical treatments. The violation is done explicitly in FEM by dropping the weak formulation at the
Dirichlet boundary (there is no choice); the same is not explicit but present in traditional FDM, spectral or multiquadric
(MQ) collocation methods (governing equations are not used at the boundary). That can be ignored for well-posed
problem, but becomes crucial for a singularly perturbed boundary value problem, e.g. viscous flow with boundary
layer.

We present the new alternative numerical solution methods that are more accurate, efficient and less mesh depen-
dent. These methods. ranging in the increasing of accuracy (and complexity of implementation), restore the conserva-
tion laws at the boundary: (i) a regularization approach, the RNS (101, (ii) a projection approach, (iii) an extension of
basis function space (for FEM or MQ[15]).

Higher accuracy numerical solution methods for boundary layer

A regularization approach to solving the Navier-Stokes equations

We consider a flow of incompressible viscous fluid in a closed 2D or 3D domain Q. The Navier-Stokes momentum
and continuity equations arc:

aa—‘:+(vvw—Re—'V3v+vp - F=0 (H



V-v=0 7 (2)

where Re = VpL/v is the Reynolds number, Vp is the velocity scale, L is the hydrodynamic length scale, v is the
kinematic viscosity, and F is a body force. In the case of thermal convection the body force is F=GrRe™ -©-¢,
(Boussinesq approximation), where © is a nondimensional temperature, Gr is the Grashoff number and e, is the unit
vector in the direction of gravity. The energy equation is:

aa_e[) +{VV)9=Pr'Re”'V?0 3
where O represents nondimensional temperature. scaled by 8 = (T - Teotd) /AT with AT = Ty — Teotq. The Prandtl,
Grashoff and Rayleigh numbers are respectively Pr = v/k, Gr = Ra/Pr,and Ra = BAT gL k~'v™!, where B, g, k are
the coefficients of thermal expansion, gravitational acceleration, and of thermodiffusivity.

Boundary and initial conditions complete the problem formulation and they will be given for each problem.

A proposed regularization consists in modifyving the continuity equation (2) to become

V.V=1V-(Vp—F) @

where T* is a small regularization parameter. For <* — 0 eq. (4) approaches the continuity equation (2). The boundary
condition for the pressure on a wall is

where n is a unit vector normal to the wall. Equations (4) and (5) present the basis of this method. Equation (5) ensures
a balance of the components of the forces that are normal to the region boundary.

First results with a more complicated model have been presented in [8] and [9]. Further numerical experiments
have shown that accurate results can be obtained with the simpler model [10]. In [10] we have shown that equations
(1), (3). and (4) with (5), called as the regularized Navier-Stokes equations (RNS model), give a better agreement with
the experimental measurements for high Reynolds number flows than the traditional NS solution by FEM.

The pressure Laplacian term on the right-hand side of eq. (4), has also been obtained by Lohner as a result of
consistent treatment of the time-advancement for the continuity eq. (2) [11]. There a discretization time step At is
used in place of our parameter T* and the boundary condition for the pressure was not specified.

The regularization parameter t* is expressed dimensionally as T* = 1L~'V,, where T is time. The dimension of v
is length squared. We introduce the regularization length scale ! with 12 = tv and rewrite T* as T* = [2L"2Re = K - Re.
where K = /2/L*. The optimal value of 1 (or /) is not known in advance. We found that for problem with smooth
boundary condition the solution is undependable of the value of T*, with T* is the range from 108 1o 1074

Such a regularization has an additional usefui feature for the FEM. It allows to use the same order finite element
approximation for the velocity and pressure .

Numerical results that we obtained for 2D/3D flow problems are in dramatically better agreement with analytical
solutions and experimental flow measurements. The numerical 2D/3D solutions by FEM with this strategy employed.
called RNS. against the 3D driven cavity flow data (2] and results by other methods are shown in Fig. 1. The residuals
of numerical solutions, shown in Fig. 2(a), demonstrate by one to two order residual reduction in the boundary layer
for the Navier-Stokes momentum equation. We recognized that eq. (4) is an approximation of the eq. (1) in projection
to the wall normal.

Further development of the method can be the use of the governing equations at the boundary. This task is
complicated in the frame of the low-order FEM scheme; a projection approach can be implemented with Hermite
finite elements (not presented here). This can be done simpler in the frame of the multiquadric method (MQ) {12].

Another approach, that is being developed for the FDM, involves high order finite difference schemes that are
specially constructed to deal with the boundary layer solution {16], 7.

PDE collocation at the boundary

To have the PDE to be satisfied at the boundary one needs to extend the basis function space in the MQ by N}, functions
for each PDE. where N, is the number of boundary nodes. It can be done by adding the layer of nodes adjacent to the
boundary and related MQ basis functions, thus allowing to add a set of equations obtained via collocation of the PDE
on the boundary.

A solution of 1D singular perturbation problem from [7] by multiquadric global basis function method [12], using
this strategy with 21 nodes, versus exact solution is shown in Fig.2(b) fore = 10~-?; 41 nodes are enough fore = 107*

3]



(not shown). The gain in the accuracy with this strategy is two to three orders compared to the original Kansa-MQ
method with 101 nodes[15].
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Figure 1: (a) Lid-driven cavity problem, Re = 3200. Comparison of horizontal velocity profiles (lines 1 to 4) for
numerical solution and experimental data (squares) by Koseff and Street (1984):1-NS. 2 - k — € model, 3-RNS (2D),
4-RNS (3D); (b) Flow over a backward facing step, Re = 44,000(132,000). Comparison of the horizontal velocity
profiles for the numerical solutions with RNS [10], k — € model [14] and experimental data (squares) [13]atx = 5.33.

Summary

Proposed higher accuracy solution methods are used in applications to 2D and 3D flows at high Reynolds number
and flows with thin boundary layer, and compared favorably with experimental data and asymptotic solutions (when
available): flow in channels, thermal and vibrational convection (Fig. 3, {18)), electrically conductive fluid flows under
strong magnetic fields etc. [10].
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Figure 2: (a) Residuals of numerical solution in the X-momentum cquation at £ = 0.5 for lid-driven cavity problem,
Re = 3,200 for the 2D NS solution and RNS solution on the same 81x81 mesh. Residuals are estimated by differ-
entiation of numerical solutions, using interpolating polynomials. The RNS residual is lower by one to two order
than the NS one; (b) 1D problem with boundary layer: €uxy +ttx = 0, u(0) = 0, u(1) = 1, comparison of numerical
(multiquadric method. 21 nodes, strategy (iii) and exact u = (1—e~¥8y/(1- e~'/%) solutions for € = 10~3. Plot for x
in [0,0.1].
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Figure 3: Typical instantaneous 3D thermovibrational melt flow patterns for: (a) translational vibration at Og, Ra =0,
Ra, = 7.25-10* Pr=0.01, @ = 100Hz, lateral vibration is applied along x-direction (horizontal): velocity compo-
nents Vx,Vy,Vz, pressure P, temperature T, temperature disturbance AT, and velocity module;

(b) circular polarized vibration, Ra = 7.25- 10, Ra, = 7.4- 108, Pr = 15, w = 10Hz : velocity components Vx,Vz,
temperature T, concentration C, velocity module, and temperature disturbance AT .
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Abstract

We present an efficient solution technique for large sparse nonsymmetric algebraic linear
systems. related to the coupled solution of incompressible viscous fluid flow equations. An
iterative solution technique with high order incomplete decomposition as preconditioning is used
in this method. A developed CNSPACK linear solver for flow problems on 2D/3D unstructured
meshes is briefly described. Analysis of the efficiency of the proposed approach is demonstrated

on 2D and 3D flow problems. Numerical experiments show that the computational complexity of
the proposed method appears to be O(N¥,

Introduction

Numerical solution of incompressible viscous flow problems by the finite-element method leads
to large linear systems of equations with sparse non-symmetric matrices. For the Navier-Stokes
equations in primitive variables with the continuity equation, treated directly, the system of
related linear equations combines many unwanted properties of algebraic systems. It is non-
symmetric. not positive definite and has zero diagonals in rows related to the discretized
continuity equation. The advantage of the coupled solution is in the improved stability of the
numerical solution for stationary flow at high Reynolds numbers. Also, much larger discrete time
steps for transient flow analysis can be used. The drawback of the coupled solution is that it is
expensive in terms of computer resources, such as memory and computation time.

Recent advances in iterative solution techniques resulted in more efficient solvers, based
on CGS and BiCGS [1.2] and GMRES methods [3.2]. A preconditioning technique can be used
to accelerate the convergence of iterative solution, thus resulting in dramatically fewer iterations.
typically 10 to 100 instead of the order of 1000 iterations without preconditioning.

Recurrent formulas have been published to construct a preconditioner for structured (3- or
5-diagonal) matrices [4]. Simple first order preconditioners are typically used for unstructured
matrices that are related to unstructured meshes for complicated domain geometry. The efficiency
of such preconditioning is low and, in a case of the incompressible Navier-Stokes equations,
solved with quadratic for velocity and linear for pressure finite elements, such a preconditioning
may result in a divergence of iterations. In [S] we proposed the high order preconditioners for
unstructured matrices. which improve convergence of the iterative solution process. In this paper,



we analyze the efficiency of this approach on 2D and 3D flow problems. Numerical experiments
show that the computational complexity of the proposed method appears to be ON™.

Problem formulation

The following are governing equations for viscous flow in closed domain G. The momentum
equation is ‘

du 1
Z UV U-—AU+Vp=0 1
5 W-=- p (1)

while the continuity equation is
div(U)=0. (2)

Here U is velocity vector, p is pressure, and Re is the Reynolds number. We present the following
examples: (i) flow in a square cavity with driven lid; (ii) viscous flow around the system of
circular cylinders: (iii) a flow in jon-exchanger channel (Fig. 1), and (iv) flow in a 3D cavity (Fig.
2).

Fig.1: Test problems. meshes and flow patterns: (a) driven cavity, 2D, (b) flow around the system
of circular cylinders, and (¢) flow in ion-exchanger channel.

Boundary conditions are: (i) velocity is equal to zero at the bottom and side walls, and a
horizontal component u of velocity is equal to 1 on a driven top lid; (ii,iii) inlet velocity profile
u=u(v), v=0 is given at the left domain side, zero velocity on top and bottom, and at cylinder
surfaces. and p = 0 and “soft” boundary conditions for velocity at the channel exit,at the right

side of the domain. Initial conditions are zero fields for all variables.

Solution method

We used the finite element method on 6-noded triangles with quadratic for velocity and linear for
pressure finite elements for 2D problems. A new regularization method for viscous flows at high



Reynolds numbers with trilinear interpolation for both velocity and pressure was used in the 3D
driven cavity example [7.8] with a geometry corresponding to the experiments [16].

The discretized linear algebraic systems are solved using the CGS-type iterative method
with preconditioning by the incomplete decomposition of the original matrix. Comparing the
CGS and GMRES methods [1, 3] in our examples, we found that both methods convergence well.
if a good preconditioner is used. The CGS method needs comparably less memory to store only
eight work vectors. S

To reduce the memory requirements, a compact storage scheme for matrices was used.
We stored only the nonzero entries. The incomplete decomposition (ID) was a product of
triangular and diagonal matrices, P = LDU. To avoid a diagonal pivot degeneration we use the
Kershaw diagonal modification [6]. If the value of diagonal element was small, i.e.

la,l< a =2 ou , the diagonal was replaced by . Here ¢ and pare the maximum magnitudes of
row and column elements, and 2" is a machine precision (¢ bits in mantissa, see details in [6]).

Fig.2: 3D driven cavity problem: mesh and horizontal velocity component is shown (dark gray
color shows larger velocity component magnitude).

For the first order ID, the matrix P has the same non-zero entry pattern as the original matrix. For
a second order or higher ID. matrix P has one or more additional entries near the locations of the
non-zero matrix entries, where the original matrix entries are Zeros.

Numerical experiments

The computations were done on the SGI 02 machine for different mesh resolutions and different
incomplete decomposition orders. Iteration termination criteria was the value of the module of the
residual: r< 100, 10% , or 10""%. The solution times for a driven cavity problem were compared
for different solution methods (Fig. 3).

The results of our numerical experiments can be summarized as follows:



(1) The iterative solution without a preconditioning, ID = 0, is time-expensive, the number of
iterations is of the order of the number of unknowns. The memory requirements are smallest.

(2) A simple incomplete decomposition of the first order, ID = 1, can result in the divergence of
the iterations. That may be a reason, why this approach is not widely used yet.

(3) The incomplete decomposition of the second or third order can reduce the number of
iterations dramatically, e.g. for N up to 10,000 the number of iteration did not exceed 200,
and, for most cases, just 50 iterations were enough for convergence. The memory
requirements are about twice as high as for ID = 0.
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Fig.3: Solution time versus number of unknowns N for 2D and 3D driven cavity problem.
comparison of different software packages. FRONTAL - direct solution by frontal method:
CNSPACK-2D- solution with proposed method, P2-P1 finite elements, matrices stored in
double precision, incomplete decomposition of the second order; Y12M — solution with
Y12M sparse matrix solver package: CNSPACK-3D (lower curve) — solution of 3D
problem: matrices are stored in single precision, a first order incomplete decomposition is
used. Theoretical asymptotics for direct solution and proposed method, the N, and NV
lines. are plotted for comparison.

(4) A new regularization approach for viscous flows, that works well with thin boundary layers
[7.8], was used in our tests for 3D cavity problem. It resulted in a much faster solution
convergence. For N up to 300,000 the number of iterations to converge was of the order of 30
t0 50. And in this case, the first order incomplete decomposition worked quite well.

(5) We compared the solution time for the same linear system by different methods: direct
solution by frontal method [5], iterative solution with Y 12M sparse matrix package [15] and
by our CNSPACK software (Fig. 3). We have been unable to use the SPARSKIT [11] and
SPARSE [12] solvers, as those failed for zero matrix diagonal elements.



(6) Convergence rate of the proposed method does not reduce with increasing the Reynolds
number Re (from 10 to 1000). We observed even faster convergence for larger Re.

(7) Proposed method can solve the linear system with a high accuracy, much higher than obtained
by a direct solution.

(8) The node/equation numbering is of great importance for the rate of convergence [13, 14]. We
found that the optimal node or equation renumbering is quite necessary for unstructured
meshes, and ID = 2 should be used for fast convergence.

(9) It appears that the computational complexity of the proposed method is O(N* (see Fig. 3).

Aspects of the efficiency of the method on superscalar pipelined microprocessors and parallel
architectures were considered. We found the solution time can be reduced by a factor of three by
using special optimization techniques for a superscalar pipelined architecture.

Proposed method is used in FEMINA/3D code that is used for solving 2D/3D incompressible
viscous flows, 3D thermal convection, magneto-hydrodynamics flows, and 3D thermal
vibrational convection in Bridgman crystal growth configurations [7-10]. If the number of
unknowns is in the range of N = 50,000 to 500,000, the problems are solved on a low-end SGI
workstation or PC, using our FEMINA/3D code (for N of the order of 10°, the supercomputer is
needed). For example, we solve large 3D time-dependent problems of thermo-vibrational
convection with 300.000 unknowns on the low-end SGI O2 workstation within a couple of hours

[81.09].

Conclusions

We have presented an efficient solution technique for large sparse nonsymmetric algebraic linear
systems for coupled solution of incompressible viscous flow equations. An iterative solution
technique with high order incomplete decomposition as preconditioning 1s used in this method.
Analysis of the efficiency of this proposed approach is demonstrated on 2D and 3D flow

problems. Numerical experiments show that the computational complexity of the proposed
method appears to be O(Ns“).
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Abstract

The RNS method was used to solve viscous flow problems at high Reynolds numbers with a thin boundary layer.
This method is related to the generalized hydrodynamic equations proposed by Alexeev (1994). It can be interpreted
as a regularization of the Navier-Stokes equations. Numerical solutions using this approach compare favorably with
experimental data. The method is discussed and numerical solutions are compared with the experimental data for
a 3D driven cavity flow at Re = 3200 and 10,000, 2D backward facing step flow at Re = 44,000, 2D channel flow
at Re number up to 10°, and a 3D thermal convection in a cylinder at Ra = 1000 to 150,000. Comparison with the
analytical asymptotic solution is provided for a thermal convection, in the electrically conducting fluid suppressed by

a strong magnetic field at Hartman numbers Ha up to 20.000. This proposed model is not-a turbulence model. and no
additional equations are introduced.

Kevwords: High Reynolds number flows, Alexeev equations, Regularization, Finite element method.

1 Introduction

Difficulties with the numerical solutions of Navier-Stokes (NS) equations for high Re number flows have usually been
referenced to insufficient mesh resolution, complicated flow physics, turbulence, etc. In series of papers. Shishkinet al.
(1995-1997, see e.g. [1]) demonstrated theoretically that grid methods perform poorly when dealing with the boundary
layer and provided an estimation for numerical solution error as O(1) for uniform meshes [1]. As a remedy for these
difficulties, the construction of special meshes was proposed, with more optimistic error estimation, as O(h'/™), his
the mesh size. with m = 7 or more. During last decades the failure of numerical solutions to obtain good agreement
with experimental data confirms Shishkin estimates (lid-driven cavity flow: experiments [2] versus simulations [3];
thermal convection in a vertical slot: experiments [4] versus simulations [5], etc.). Successful results implementing
Shishkin-type strategy are obtained in {6]. The boundary layer thickness, which is not known in advance, is used, to
construct Shishkin mesh. Meshless methods have similar drawbacks [7].

We have developed an alternate approach, that is more accurate, less mesh-dependent and can be interpreted as a
regularization of the Navier-Stokes equations. Itis based on the mathematical model associated with the generalized
hydrodynamic equations by Alexeev [8], [9]. The numerical solutions agree well with the experimental measurements
for a set of flow problems at high Reynolds number and for flows with thin boundary layer [10], [11], {12], [13],
[14]{15]. This is not a turbulence model, and no additional equations are introduced.

The model was successfully compared to: (1) 3D driven cavity flow data by Koseff and Street (1982) at Re = 3200
and Re = 10,000: (2) 2D backward facing step flow by Kim et al. (1980) at Re = 44,000, (3) 3D thermal convection
in a cylinder at Ra = 1000 to 150,000; and (4) asymptotic solution for a thermal convection in the semiconductor melt

suppressed by the magnetic field at Hartman numbers Ha up to Ha = 20,000. Numerical results for 2D channel flow
at Re number up to 10° are also presented.

2 A regularization approach to solving Navier-Stokes equations

Governing equations. To consider a flow of incompressible viscous fluid, in a closed 2D or 3D domain Q. Navier-
Stokes momentum and continuity equations are:

aa—‘[]+(VV)V—Re"V2V+Vp—F=O M
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Figure 1: Lid-driven cavity problem, Re = 3200: (a) horizontal velocity profiles (1-4) for numerical solution (solid
and dashed lines): [-NS, 2 - standard k — € model, 3-RNS (2D), 4-RNS (3D); squares - experimental data by Koseff
and Street (1982) in the symmetry plane ¥ = 1.5. (b) residuals of numerical solution in the momentum equation (1)
for the 2D NS and RNS solutions at x = 0.5. Residuals are estimated by differentiation of numerical solutions, using
interpolating polynomials. (¢) Re = 10*. numerical horizontal velocity profiles (1-3) and experimental data (triangles).
A k — & model solution is obtained with commercial code CFD2000. '
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where Re = VoL /v is the Reynolds number. Vy is the velocity scale. L is the hydrodynamic length scale, v is the
kinematic viscosity. and F is a body force. In the case of thermal convection the body force is F = GrRe™'-©-¢,
(Boussinesq approximation), where © is a nondimensional temperature, Gr is the Grashotf number and e, is the unit
vector in the direction of gravity. The energy equation is:

%—? +(VV)B=Pr 'Re”' V0 3

where 0 represents nondimensional temperature, scaled by 8 = (T — Toota)/ AT with AT = Ty — Teot- The Prandtl.
Grashoff and Rayleigh numbers are respectively Pr = v/k, Gr = Ra/Pr,and Ra = BAT gL k™ 'v=!, where B, g, k are
the coefficients of thermal expansion, gravitational acceleration. and of thermodiffusivity.

We have analvzed the generalized hydrodynamic equation, proposed in (8] (a review in [9]), for the case of incom-

pressible viscous flow and kept only a few main order terms, spatial fluctuations, in the continuity equation. This may
be interpreted as a regularization of the Navier-Stokes equations.

A proposed regularization involves modifying the continuity equation (2) to become
V-V=1tuV-(Vp-F) (4)

where 7" is a small regularization parameter. For t° — 0. eq. (4) approaches the continuity equation (2). The boundary
condition for pressure on a wall is

(Vp—F) n=0, (5)

where n is a unit vector normal to the wall. Equations (4) and (5) present the basis of our method. which takes into
account only a few of many additional terms of the generalized hydrodynamic equations, called fluctuations (temporal
and spatial). in {8]. Equation (5)is a condition of absence of the fluctuations on walls, according to [8].

Preliminary results with a more complicated model are presented in [10] and [11]. Further numerical experiments
have shown that satisfactory results can be obtained with the simpler model presented above [12]. Numerical solutions
of egs. (1). (3), and (4), called regularized Navier-Stokes equations (RNS), with the boundary condition (5), give a
better agreement with the experimental measurements for high Reynolds number flows than the traditional solution of
Navier-Stokes egs. (1) and (2}, (NS), with the finite element method (FEM).

Note that numerical formulations, containing extra terms in the momentum and continuity equations, have been
proposed in the frame of kinetically consistent numerical schemes. developed by Elizarova and Chetverushkin {171,
[18]). The justification of introducing extra terms into hydrodynamic equations is discussed in [19] from a physical
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Figure 2: (a) Flow over a backward facing step, Re = 44.000(132,000), comparison of the horizontal velocity for the
RNS solution. kX — € model [25], and the experimental data (squares) [23] at x = 5.33; (b) 2D channel flow, horizontal
velocity profiles U(z) at x = 2.5, computed with RNS Re =5 10? (laminar and turbulent), 10%, 10° and 10°.

kinetics viewpoint. The pressure Laplacian and other terms in the discretized continuity equation, have also been
proposed by Lohner as a result of consistent treatment of the time-advancement for the continuity eq. (2) [16].

Further. egs. (1). (3), and (4) with the boundary condition (5) are treated as mathematical model. having a control
(regularization) parameter t*. This regularization parameter 1" is expressed dimensionally as T° = tL~ 'V, where T is
time. The dimension of Tv is a length squared. We introduce the regularization length scale [ with I2 = tv and rewrite
1 as 1° = [2L"2Re = K - Re, where K = [*/L*. The optimal value of T (or /) is not known in advance. We found that.
for problems with smooth boundary conditions. the numerical solution only slightly depends on the value of 77, with
7* in the range of 1078 to 10~2. This proposed regularization has an additional useful feature for the FEM. It uses the
same order finite element approximation for velocity and pressure for RNS.

3 Numerical experiments with RNS

In this section. we present the numerical results of a few flow problems, and compare these with experimental data.
The FEM was used to discretize the governing equations. Algebraic equations for momentum and continuity were
solved simultaneously using the iterative CNSPACK solver [20], with preconditioning by a high order incomplete
decomposition. lteration termination critetion was a convergence of relative residuals to 10~% (or 107'2).

Driven cavity problem. Shown in Fig. 1 are the numerical solutions. with RNS employed (10],(12], against
the 2D and 3D driven cavity flow data at Re = 3.200 and 10,000 [2], and results by other methods. We used 81x81
node uniform triangular mesh for the RNS. The same mesh, with quadratic for velocity and linear for pressure finite
elements. was used in a standard FEM solution of egs. (1. 2). These results are labeled as NS in Fig. 1(a) and 1(c).
The RNS model parameter, T° (or 12 in [2L~7). was varied to match one of the experimental velocity profiles. A
value. 2L~ = 1.5- 1075, resulted in good agreement for all the velocity profiles and both flow regimes, Re = 3.200
and 10.000. To our surprise. the dimensional value of / 0.58mm was a good approximation to the experimentally
observed “Kolmogorov microscale” leyp = 0.5mm (see [2]. p. 398).

For 3D flow we solved the RNS at Re = 3200 for half of the cavity with a mesh of 41x41x33 nodes (221.892
unknowns). refined near the walls. The symmetry condition was used on the vertical symmetry plane y = 1.5. The
same 2D value of K = 1.5- 1077 was used in the 3D computations, the modeling results are presented in Fig. 1 as well.
One can see that the velocities obtained for both the 2D and 3D profiles are close to the experimental data, except in
one region. We did not obtain the 3D stationary solution at Re = 10*. The solution went unstationary at Re > 8.450.
According to Baggett and Trefethen [22]. the stationary solution exists, but the basin of attraction of this solution may
be extraordinarily narrow. having a width of O(Re*) for some o < — 1.

Mass conservation in the continuity equation was thoroughly analyzed. The local values of divV for the numerical
solution were examined. The conclusion was that a numerical solution for the RNS model has the same order of error
in the mass conservation as the NS solution with the same number of mesh nodes [12].

‘o3
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Figure 3: (a) Thermal convection in a 3D differentially heated cylinder; (b) comparison of the temperature difference
AT. versus Ra with the experimental data {27] and finite-volume computations: squares - experimental data, solid line
- numerical results for perfect wall conductivity [26], triangles - RNS results; dashed line - numerical results when
the steel properties for the wall conductivity have been used (adjoint problem);here AT is a temperature difference
between locations marked as | and 2 in (a). Both the NS and RNS solutions are nearly identical here.

The residuals of numerical solutions in the momentum equation (1) are presented in Fig. 1b. It shows one to two
order reductions for the RNS solution residual in the boundary layer, compared to the NS solution residual.

Flow over a backward facing step. The numerical results for a 2D flow over a backward facing step of height
H,H =L/3 (Lis achannel height) at Re = 4.4- 10* (or Rer = 1.32-10° in [24]) were obtained and compared with
the experimental measurements of [23]. We used a | 10x60 mesh, refined near the walls, and started the computations
at a low Revnolds number. We raised Re in small increments until reaching 44,000. Fig. 2(a) presents the computed
velocity profile, at x = 5.33H (x = 0 at the edge of the step), and the experimental mean velocity measurements [23].

The RNS model output satisfactorily agrees with the experimental data for both the velocity profile and the recircu-
lation zone length X,. We computed X,/H = 7.50. while X7 [H & 7+0.5 was obtained experimentally. The value of
<" used in the computations was in the range of 10-> to 10~*. This did not noticeably influence the results. For smaller
values of T". it was more difficult to reach the steady state solution at Re = 44,000; more and smaller increments in
Re had tobe used. If the increments in the Re number were large. the flow pattern bifurcated to an unsteady flow, with
vortices periodically originating from the recirculation zone and flowing downstream.

The solution with a standard k — € model shows the velocity profile at x = 5.33 that has no backward flow. A
standard & — € model underpredicts the recirculation zone length X, by a substantial amount, 20-25% according 1o
[24]. where more sophisticated turbulence models have been proposed for this problem.

Flow in a 2D channel, of height ¥ = | and length L = 4, was the subject of a few experiments with the RNS at
Reynolds numbers Re = 5 - 10%. 10*. 10° and 10°. An 81x100 mesh refined near the walls was used. Inlet flow profiles
were (i) U = 1. and (i) U = 6z(1 — ). We were obtained both parabolic and “turbulent” flow profiles for Re up 10 10°.
depending on the inlet flow conditions and the value of T To obtain a “turbulent” flow profile at Re = 5,000, with the
inlet condition (ii), we started with T° = 0.01. and were then able to keep this “turbulent” profile type at reduced 1’
down to 10~ (Fig. 2b). The boundary layer thickness is about & ~ Re™? (obtained graphically from Fig. 2b).

3D Thermal convection in a differentially heated horizontal cylinder. Alinear temperature profile is given
assumed on a cylinder wall. Experimental data by Bogatirev et al. [27] and finite volume simulations by Bessonov
{26] are used for comparison at Rayleigh numbers in the range of 10% to 1.2-10°%, Pr = 0.9 (Fig. 3a). For the linear
temperature distribution on a cylinder wall. we obtained good agreement with the numerical resuits {26]. We used
a 17.4357 node hexaedral mesh refined near the walls. Agreement with the experimental data was not good for
Ra > 2000 (solid line in Fig. 3b). Therefore computations were done for a real. finite wall conductivity [26]. The
thermodiffusivity data for stainless steel was used. and the adjoint problem was solved. Thereby, agreement with the
experimental data has been significantly improved (Fig. 3b. dashed line). The value of 7% used was 1077 10 1077,
which did not noticeably affect the RNS results.

Magnetic field suppression of the semiconductor melt flow, modeling with RNS, is considered in [13] and (14].
The application of magnetic fields is a promising approach for reducing convection during directional solidification
of electrically conductive melts. Current technology allows for experiments using very strong static fields. for which
nearly convection free segregation is expected in melts exposed to stabilizing temperature gradients (vertical Bridgman
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Figure 4: (a)Vertical velocity profile Vi(x) at y =0.25H, x in [-1,1], Ha=22" 10* (B = 50 Tesla); (b) details
of the velocity profile (a) in a boundary layer, x from —1 to —0.99; (c) Summary: maximum value of horizontal
velocity magnitude versus magnetic field B for aligned and misaligned by 0.5 degree magnetic field and gravity
vectors. Predicted theoretical asymptotic U ~ Ha™? is observed starting from B = 0.5 Tesla (Ha = 220).

method) [28]. The governing equations solved for this problem are egs. (1), (3), and (4), where F. the body force due
to the magnetic field (Lorenz force), is given by

F = PrHa"[(V x eg) x eg]. : (6)

Here F=(Pr(Ha)*U, 0) for the 2D case of a vertical magnetic field and U is the horizontal component of the velocity.
The Hartmann number, given by Ha = LBy \/v?—p, is in the range of Ha =100 to 10*, for the materials and magnetic
fields under investigation. Here p.o are the density and electrical conductivity, Bg is the magnetic field intensity, and
ep is the unit vector in the direction of the magnetic field.

The computations are difficult because of the thin boundary layer, although the velocity of the generated flows is
extremely low, Re ~ 10~" 10 107%. A high value of the Hartmann number results in a relatively small coefficient at the
highest derivative of the velocity in the momentum equation. Solutions of such problems exhibit thin boundary layers
of thickness 8 ~ Ha™', along with “equivalent” Reynolds number Reeqy ~ Ha®, Reoyy =4+ 10* for B=0.5 Tesla. and
Reey- =4+ 108 for B=50 Tesla. Some of the results for 2D models are shown in Fig. 4. The RNS numerical solution
is rather smooth even for a very thin boundary layer. with thickness 8 ~ 10~4 (Ha = 2 - 10*). Other methods tested in
[13], [14] (including industrial code) did not provide acceptable results or failed for Ha > 100.

Conclusions

The RNS method was review with applications to 2D and 3D flows at high Reynolds number and flows with thin
boundary layers. The numerical resuits compared favorably with experimental data for driven cavity flow, flows in
channels. thermal convection, and asymptotic solutions for electrically conductive fluid flows under strong magnetic
fields. The RNS method is used for modeling 3D thermo-vibrational convection in Bridgman melt configurations [15].
Similar ideas have been used successfully to improve the accuracy of the meshless multiquadric radial-basis function
methods {29}, [30].
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